Skip to main content
Log in

Hydrogels of starch-g-(tert-butylacrylate) and starch-g-(n-butylacrylate) copolymers

Synthesis and formation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The synthesis, characterization, and hydrogel properties of starch-g-(tert-butylacrylate) and starch-g-(n-butylacrylate) copolymers were studied. The optimum conditions for the grafting process of tert-butylacrylate into 1.0 g of starch were as follows: [tert-butylacrylate] = 0.04 mol/L, [CAN] = 9.0 × 10−4 mol/L, temperature = 20 °C in 100 mL solution, whereas the results using n-butylacrylate monomer were as follows: [n-butylacrylate] = 0.04 mol/L, [CAN] = 4.0 × 10−3 mol/L, temperature = 30 °C in 100 mL solution. The grafting evidences of monomers into starch were done through TG and its derivative DTG for thermal changes and mass losses, scanning electron microscope (SEM) for morphological changes, powder X-ray for crystallinity measurements and FTIR for functional group changes. Acid hydrolysis method was used efficiently to allow the calculations of the viscosity average molecular weight (M v) of the grafted chains on starch and consequently the real percent of grafting efficiency (i.e. %GY). The capability of starch-g-(n-BAC) hydrogel to absorb water were found 10 times more than starch-g-(tert-BAC) hydrogel, which were clarified through the X-ray and SEM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Koopmans C, Ritter H. Color change of N-isopropylacrylamide copolymer bearing Reichardts Dye as optical sensor for lower critical solution temperature and for host−guest interaction with β-cyclodextrin. J Am Chem Soc. 2007;129:3502–3.

    Article  CAS  Google Scholar 

  2. Schonohoff M, Larsson A, Welzel P, Kuckling D. Thermoreversible polymers adsorbed to colloidal silica: a 1H NMR and DSC study of the phase transition in confined geometry. J Phys Chem. 2002;B106:7800–8.

    Google Scholar 

  3. Geresh S, Gdalevsky G, Gilboa I, Voorspoels J, Remon J, Kost J. Bioadhesive grafted starch copolymers as platforms for peroral drug delivery: a study of theophylline release. J Control Release. 2004;94:391–9.

    Article  CAS  Google Scholar 

  4. Picker-Freyer KM. An insight into the process of tablet formation of microcrystalline cellulose. J Therm Anal Calorim. 2007;89:745–8.

    Article  CAS  Google Scholar 

  5. Szamel Gy, Klebert S, Sajo I, Pukanszky B. Thermal analysis of cellulose acetate modified with caprolactone. J Therm Anal Calorim. 2008;91:715–22.

    Article  CAS  Google Scholar 

  6. Fares MM, Al-Ta’ani B. Graft copolymerization onto chitosan: I. Grafting of ethylmethacrylate using ceric ammonium nitrate as an initiator. Acta Chim Slov. 2003;50:275–85.

    CAS  Google Scholar 

  7. Karavas E, Georgarakis E, Bikiaris D. Adjusting drug release by using miscible polymer blends as effective drug carries. J Therm Anal Calorim. 2006;84:125–33.

    Article  CAS  Google Scholar 

  8. Qudsieh I, Fakhru’l-Razi A, Muyibi S, Ahmad M, Rahman MAb, Yunus W. Preparation and characterization of poly(methyl methacrylate) grafted sago starch using potassium persulfate as redox initiator. J Appl Polym Sci. 2004;94:1891–7.

    Article  CAS  Google Scholar 

  9. Pawelchak JM, Freeman FM. Method of treating wounds with granules and dressing, Patent ID: US4728642, USA, March 1988.

  10. Mao H, Li C, Zhang Y, Furyk S, Cremer P, Bergbreiter D. High-throughput studies of the effects of polymer structure and solution components on the phase separation of thermoresponsive polymers. Macromolecules. 2004;37:1031–6.

    Article  CAS  Google Scholar 

  11. Atta A, Maysour N, Arndt K. Swelling characteristics of pH- and thermo-sensitive crosslinked poly(vinyl alcohol) grafts. J Polym Res. 2006;13:53–63.

    Article  CAS  Google Scholar 

  12. Pajander J, Laamanen M, Grimsey I, Korhonen O, van Veen B, Ketolainen J. Effects of formulation parameters and drug-polymer interactions on drug release from starch acetate matrix tablets. Eur J Phrma Sci. 2008;34:S31.

    Google Scholar 

  13. Abd El-Mohdy HL, Hegazy E-SA, Abd El-Rehim HA. Characterization of starch/acrylic acid super-absorbent hydrogels prepared by ionizing radiation. J Macromol Sci Part A. 2006;43:1051–63.

    Article  Google Scholar 

  14. Cao L, Chen L, Chen X, Zuo L, Li Z. Synthesis of smart core–shell polymer in supercritical carbon dioxide. Polymer. 2006;47:4588–95.

    Article  CAS  Google Scholar 

  15. Misra BN, Dogra R. Grafting onto starch. IV. Graft copolymerization of methyl methacrylate by use of AIBN as radical initiator. J Macromol Sci Part A. 1980;14:763–70.

    Article  Google Scholar 

  16. Hebeish A, Bayazeed A, El-Alfy E, Khalil I. Synthesis and properties of polyacrylamide-starch graft copolymers. Starch/Starke. 1989;40:223–9.

    Article  Google Scholar 

  17. Feng B, Wu S. Hebei Gongxueyan Xuebao. 1989;18:75 (in Chinese) (Chem Abstr. 115:9993b).

    Google Scholar 

  18. Ghosh P, Paul SJ. Photograft copolymerization of methyl methacrylate on potato starch using potassium pervanadate as initiator. J Macromol Sci Part A. 1983;20:261–9.

    Article  Google Scholar 

  19. Beineke TA, Delgaudio J. Crystal structure of ceric ammonium nitrate. Inorg Chem. 1968;7:715–21.

    Article  CAS  Google Scholar 

  20. Mino G, Kaizerman S. J Polym Sci. 1958;31:122.

    Article  Google Scholar 

  21. Fares MM, El-faqeeh AS, Osman ME. Graft copolymerization onto starch–I. Synthesis and optimization of starch grafted with N-tert-butylacrylamide copolymer and its hydrogels. J Polym Res. 2003;10:119–25.

    Article  CAS  Google Scholar 

  22. Fares MM, El-faqeeh AS. Thermal and thermoxidative degradations of starch and thermosensitive starch-g-BAM copolymers. J Therm Anal Calorim. 2005;82:161–6.

    Article  CAS  Google Scholar 

  23. Fanta GF, Burr RC, Doane WM. Graft polymerization of acrylamide and 2-acrylamido-2-methylpropanesulfonic acid onto starch. J Appl Polym Sci. 1994;24:2015–23.

    Article  Google Scholar 

  24. Brandrup J, Immergut EH. Polymer handbook. Wiley; 1966. P. VII-68.

  25. Keles H, Celik M, Sacak M, Aksu L. Graft copolymerization of methyl methacrylate upon gelatin initiated by benzoyl peroxide in aqueous medium. J Appl Polym Sci. 1999;74:1547–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Fares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fares, M.M., El-faqeeh, A.S., Ghanem, H. et al. Hydrogels of starch-g-(tert-butylacrylate) and starch-g-(n-butylacrylate) copolymers. J Therm Anal Calorim 99, 659–666 (2010). https://doi.org/10.1007/s10973-009-0213-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0213-2

Keywords

Navigation