Skip to main content
Log in

Oxidation kinetics of nickel nano crystallites obtained by controlled thermolysis of diaquabis(ethylenediamine)nickel(II) nitrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 °C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 °C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281:2013–6.

    Article  CAS  Google Scholar 

  2. Kumar D, Zhou H, Nath TK, Kvit AV, Narayan J, Craciun V, et al. Improved magnetic properties of self-assembled epitaxial nickel nanocrystallites in thin-film ceramic matrix. J Mater Res. 2002;17:738–42.

    Article  CAS  Google Scholar 

  3. Chu SZ, Wada K, Inoue S, Todoroki SI, Takahashi YK, Hono K. Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition. Chem Mater. 2002;14:4595–602.

    Article  CAS  Google Scholar 

  4. Green M, O’Brien P. The preparation of organically functionalised chromium and nickel nanoparticles. Chem Commun 2001;1912–3.

  5. Yu K, Katabi G, Cao X, Prozorov R, Gedanken A. Sonochemical preparation of amorphous nickel. J Non-Cryst Solids. 1996;201:159–62.

    Article  Google Scholar 

  6. Degen A, Macek J. Preparation of submicrometer nickel powders by the reduction from nonaqueous media. Nano Struct Mater. 1999;12:225–8.

    Article  Google Scholar 

  7. Davis SC, Klabunde KJ. Unsupported small metal particles: preparation, reactivity, and characterization. Chem Rev. 1982;82:153–208.

    Article  CAS  Google Scholar 

  8. Ni X, Zhao Q, Zhang D, Yang D, Zheng H. Large scaled synthesis of chainlike nickel wires assisted by ligands. J Cryst Growth. 2005;280:217–21.

    Article  CAS  Google Scholar 

  9. Wang H, Jiao X, Chen D. Monodispersed nickel nanoparticles with tunable phase and size: synthesis, characterization, and magnetic properties. J Phys Chem C. 2008;112:18793–7.

    CAS  Google Scholar 

  10. Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, et al. Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv Mater. 2005;17:429–34.

    Article  CAS  Google Scholar 

  11. Rejitha KS, Mathew S. Thermal deamination kinetics of tris(ethylenediamine)nickel(II) sulphate in the solid-state. J Therm Anal Calorim. 2008;93:213–7.

    Article  CAS  Google Scholar 

  12. Schimpf S, Louis C, Claus P. Ni/SiO2 catalysts prepared with ethylenediamine nickel precursors: influence of the pretreatment on the catalytic properties in glucose hydrogenation. Appl Catal A. 2007;318:45–53.

    Article  CAS  Google Scholar 

  13. Negrier F, Marceau E, Che M, Giraudon JM, Gengembre L, Lofberg A. A systematic study of the interactions between chemical partners (metal, ligands, counterions, and support) involved in the design of Al2O3-supported nickel catalysts from diamine–Ni(II) chelates. J Phys Chem B. 2005;109:2836–45.

    Article  CAS  Google Scholar 

  14. Atkinson A, Taylor RI. The diffusion of 63Ni along grain boundaries in nickel oxide. Philos Mag A. 1981;43:979–98.

    Article  CAS  Google Scholar 

  15. Zhou L, Rai A, Piekiel N, Ma X, Zachariah MR. Ion-mobility spectrometry of nickel nanoparticle oxidation kinetics: application to energetic materials. J Phys Chem C. 2008;112:16209–18.

    Article  CAS  Google Scholar 

  16. Song P, Wen D, Guo ZX, Korakianitis T. Oxidation investigation of nickel nanoparticles. Phys Chem Chem Phys. 2008;10:5057–65.

    Article  CAS  Google Scholar 

  17. Suwanwatana W, Yarlagadda S, Gillespie JW. An investigation of oxidation effects on hysteresis heating of nickel particles. J Mater Sci. 2003;38:565–73.

    Article  CAS  Google Scholar 

  18. Karmhag R, Tesfamichael T, Wackelgard E, Niklasson GA, Nygren M. Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix. Sol Energy. 2000;68:329–33.

    Article  CAS  Google Scholar 

  19. Negrier F, Marceau E, Che M, de Caro D. Role of ethylenediamine in the preparation of alumina-supported Ni catalysts from [Ni(en)2(H2O)2](NO3)2: from solution properties to nickel particles. C R Chimie. 2003;6:231–40.

    CAS  Google Scholar 

  20. Suryanarayana C, Norton MG. X-ray diffraction a practical approach. New York: Plenum Press; 1998.

    Google Scholar 

  21. Curtis NF, Curtis YM. Some nitrato-amine Nickel(II) compounds with monodentate and bidentate nitrate ions. Inorg Chem. 1965;4:804–9.

    Article  CAS  Google Scholar 

  22. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds part B: applications in coordination, organometallic, and bioinorganic chemistry. 5th ed. New York: Wiley; 1997.

    Google Scholar 

  23. Sun KQ, Marceau E, Che M. Evolution of nickel speciation during preparation of Ni–SiO2 catalysts: effect of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes. Phys Chem Chem Phys. 2006;8:1731–8.

    Article  CAS  Google Scholar 

  24. JCPDS card No: 04-0850.

  25. Guerlou GL, Delmas C. Structure and properties of precipitated nickel-iron hydroxides. J Power Sour. 1993;45:281–9.

    Article  Google Scholar 

  26. JCPDS card No: 47-1049.

  27. Karmhag R, Niklasson GA, Nygren M. Oxidation kinetics of nickel nanoparticles. J Appl Phys. 2001;89:3012–7.

    Article  CAS  Google Scholar 

  28. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B. 1996;4:323–8.

    Article  Google Scholar 

  29. Akahira T, Sunose T. Research report of Chiba Institute Technology. 1971;16:22.

  30. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci B. 1969;7:41–6.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  32. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  33. Courtade L, Turquat Ch, Muller Ch, Lisoni JG, Goux L, Wouters DJ, et al. Oxidation kinetics of Ni metallic films: formation of NiO-based resistive switching structures. Thin Solid Films. 2008;516:4083–92.

    Article  CAS  Google Scholar 

  34. Ren YL, Wang X, Shui M, Li RS. The influence of morphology of ultra-fine calcite particles on decomposition kinetics. J Therm Anal Calorim. 2008;91:867–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Department of Science and Technology, India for using the Sophisticated Analytical Instrument Facility (SAIF) at the Sophisticated Test and Instrumentation centre (STIC), Cochin University of Science and Technology, Cochin, for SEM analysis. S. Manju thanks Kerala State Council for Science, Technology and Environment for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karukapadath K. M. Yusuff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, P.P., Arun, V., Manju, S. et al. Oxidation kinetics of nickel nano crystallites obtained by controlled thermolysis of diaquabis(ethylenediamine)nickel(II) nitrate. J Therm Anal Calorim 100, 733–740 (2010). https://doi.org/10.1007/s10973-009-0209-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0209-y

Keywords

Navigation