Skip to main content
Log in

Characterization of starch and its mono and hybrid derivatives by thermal analysis and FT-IR spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Carboxymethylation of wheat starch and α-cyclodextrin followed by ultrasonic treatment of carboxymethyl wheat starch afforded starch derivatives differing in molecular size. Their degree of substitution was estimated to be 0.6. Starch materials were further sulfated to give hybrid derivatives with carboxymethyl and sulfate groups. A series of wheat starch and α-cyclodextrin derivatives were characterized by FT-IR spectroscopy and thermogravimetric analysis. Thermal analysis of starch and their derivatives revealed information concerning their thermal stability and decomposition. It has been found that carboxymethylation and sulfation decrease the thermal stability of starch materials. Similarly, their hybrid carboxymethyl-sulfate derivatives showed the same effect. Further, it has been found that the thermal stability of cyclic molecules was higher in comparison with linear ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perkins AT, Mitchell HL. Differential thermal analysis of organic compounds. Trans Kansas Acad Sci. 1957;60:437.

    Article  CAS  Google Scholar 

  2. Morita H. Differential thermal analysis of some polyglucosans. Anal Chem. 1957;29:1095–7.

    Article  CAS  Google Scholar 

  3. Varma MCP. Differential thermal analysis of organic solids. J Appl Chem (London). 1958;8:117–21.

    CAS  Google Scholar 

  4. Aggarwal P, Dollimore D. A comparative study of the degradation of different starches using thermal analysis. Talanta. 1996;43:1527–30.

    Article  CAS  Google Scholar 

  5. Elliott C, Ye Z, Mojumdar SC, Saleh MT. A potential bacterial carrier for bioremediation. Characterization of insoluble potato fiber. J Therm Anal Cal. 2007;90(3):707–11.

    Article  CAS  Google Scholar 

  6. Belopolskaya TV, Tsereteli GI, Grunina NA, Smirnova OI. Calorimetric study of the native and postdenatured structures in starches with different degree of hydration. J Therm Anal Cal. 2008;92(3):677–82.

    Article  CAS  Google Scholar 

  7. Tsereteli GI, Belopolskaya TV, Grunina NA. Dehydrated native biopolymers––a unique representative of glassy system. J Therm Anal Cal. 2008;92(3):711–6.

    Article  CAS  Google Scholar 

  8. Tomasik P, Palaasinki M, Wiejak S. The thermal decomposition of carbohydrates. Part II. The decomposition of starch. Adv Carbohydr Chem Biochem. 1989;47:279–87.

    Article  CAS  Google Scholar 

  9. Thiebaud S, Aburto J, Alric I, Borredon E, Bikaris D, Prinos J, et al. Properties of fatty-acid esters of starch and their blends with LDPE. J Appl Polym Sci. 1997;65:705–21.

    Article  CAS  Google Scholar 

  10. Aburto J, Alric I, Thiebaud S, Borredon E, Bikaris D, Prinos J, et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. J Appl Polym Sci. 1999;74:1440–51.

    Article  CAS  Google Scholar 

  11. Aggarwal P, Dollimore D. The effect of chemical modification on starch studied using thermal analysis. Thermochim Acta. 1998;324:1–8.

    Article  CAS  Google Scholar 

  12. Šimkovic I, Jakab E. Thermogravimetry/mass spectrometry study of weakly basic starch-based ion exchanger. Carbohydr Polym. 2001;45:53–9.

    Article  Google Scholar 

  13. Zhang X, Golding J, Burgar I. Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopy. Polymer. 2002;43:5791–6.

    Article  CAS  Google Scholar 

  14. Teramoto N, Motoyama T, Yosomiya R, Shibata M. Synthesis, thermal properties, and biodegradability of propyl-etherified starch. Eur Polym J. 2003;39:255–61.

    Article  CAS  Google Scholar 

  15. Fang JM, Fowler PA, Tomkinson J, Hill CAS. The preparation and characterization of a series of chemically modified potato starches. Carbohydr Polym. 2002;47:245–52.

    Article  CAS  Google Scholar 

  16. Heinze T, Talaba P, Heinze U. Starch derivatives of high degree of functionalization. 1. Effective, homogeneous synthesis of p-toluenesulfonyl (tosyl) starch with a new functionalization pattern. Carbohydr Polym. 2000;42:411–20.

    Article  CAS  Google Scholar 

  17. Schöniger K. Die mikroanalytische Schnellbestimmung von Halogenen und Schwefel in organischen Verbindungen. Mikrochim Acta. 1956;122:869–76.

    Google Scholar 

  18. Bhattacharyya D, Singhal RS, Kulkarni PR. Physicochemical properties of carboxymethyl starch prepared from corn and waxy amaranth starch. Carbohydr Polym. 1995;27:167–9.

    Article  CAS  Google Scholar 

  19. Rinaudo M, Hudry-Clergeon G. Etude des O-carboxyméthylcelluloses à degré de substitution variable. I: Préparation et caractérisation des produits. J Chim Phys. 1967;64:1746–52.

    CAS  Google Scholar 

  20. Mähner C, Lechmer MD, Nordmeier E. And characterisation of dextran and pullulan sulphate. Carbohydr Res. 2001;331:208.

    Article  Google Scholar 

  21. Dubois M, Gilles KA, Hamilton KJ, Rebers PA, Smith E. Colorimetric method for determination of sugars and related substances. Anal Biochem. 1959;28:350–6.

    Google Scholar 

  22. Günzler H, Gremlich HU. IR spectroscopy. Weinheim: Wiley-VCH; 2002.

    Google Scholar 

  23. Ma X, Chang PR, Yu J. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym. 2008;72:369–75.

    Article  CAS  Google Scholar 

  24. Rudnik E, Matuschek G, Milanov N, Kettrup A. Thermal properties of starch succinates. Termochim Acta. 2005;427:163–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Slovak Scientific Grant Agency VEGA, Grants Nos. 2/0155/08 and 2/0055/08, and the Science and Technology Assistance Agency APVV No. 0030/08. The authors wish to thank Dr. V. Sasinkova for FTIR spectra and Dr. A. Graydon for manuscript reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Capek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capek, P., Drábik, M. & Turjan, J. Characterization of starch and its mono and hybrid derivatives by thermal analysis and FT-IR spectroscopy. J Therm Anal Calorim 99, 667–673 (2010). https://doi.org/10.1007/s10973-009-0194-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0194-1

Keywords

Navigation