Skip to main content
Log in

Study of alkaline hydrothermal activation of belite cements by thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of alkaline hydrothermal activation of class-C fly ash belite cement was studied using thermal analysis (TG/DTG) by determining the increase in the combined water during a period of hydration of 180 days. The results were compared with those obtained for a belite cement hydrothermally activated in water. The two belite cements were fabricated via the hydrothermal-calcination route of class-C fly ash in 1 M NaOH solution (FABC-2-N) or demineralised water (FABC-2-W). From the results, the effect of the alkaline hydrothermal activation of belite cement (FABC-2-N) was clearly differentiated, mainly at early ages of hydration, for which the increase in the combined water was markedly higher than that of the belite cement that was hydrothermally activated in water. Important direct quantitative correlations were obtained among physicochemical parameters, such as the combined water, the BET surface area, the volume of nano-pores, and macro structural engineering properties such as the compressive mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moranville-Regourd M. In: Bournazel JP, Malier Y, editors. Proceedings of the RILEM international conference on concrete: from material to structure, France. RILEM Publications; 1996, p. 260–76.

  2. Taylor HFW. Cement chemistry. London, Great Britain: Academic Press; 1990. p. 10–1.

    Google Scholar 

  3. Suzuki K, Ito S, Shibata S. In: Proceedings of the 7th international congress of the chemistry of cement, Paris (Editions Septima) II; 1980, p. 47.

  4. Young JF. Highly reactive dicalcium silicates for belite cement; concrete: from material to structure. In: Proceedings of the RILEM international conference, France; 1996, p. 1–15.

  5. Herfort D, Holmboe AS, Costa U, Gotti E, Grundvig S. High strength, low energy cement based on belite rich clinker. In: The 8th euroseminar on microscopy in building materials, Athens; September 4–7, 2001, p. 139–46.

  6. Guo S-H, Zhang H-T, Zhen L, Zhang W-S, Chen Y-M. The formation and performance of high belite cement clinker with different interstitial phase content in cement’s contribution to the development in the 21st century. In: Proceedings of the 11th international congress on the chemistry of cement (ICCC), Durban, South Africa, 2003, p. 1027–34.

  7. Roy DM, Oyefesobi SO. Preparation of very reactive Ca2SiO4 powder. J Am Ceram Soc. 1977;60:178–80.

    Article  CAS  Google Scholar 

  8. Ishida H, Mitsuda T. Science and technology of highly reactive β-dicalcium silicate: preparation, hydration and gels, in materials science of concrete V. In: Skalny J, Mindess S, editors. Westerville, Ohio: The American Ceramic Society; 1998, p. 1–44.

  9. Dovál M, Palou M, Mojumdar SC. Hydration behavior of C2S and C2AS nanomaterials, synthetized by sol–gel method. J Therm Anal Calorim. 2006;86:595–9.

    Article  CAS  Google Scholar 

  10. Rodrigues FA. Low-temperature synthesis of cements from rice hull ash. Cem Concr Res. 2003;33:1525–9.

    Article  CAS  Google Scholar 

  11. Goñi S, Guerrero A, Luxán MP, Macías A. Dehydration of pozzolanic products hydrothermally synthesized from fly ashes. Microstructure evolution. Mater Res Bull. 2000;35(8):1333–44.

    Article  Google Scholar 

  12. Guerrero A, Goñi S, Macías A, Luxán MP. Hydraulic activity and microstructural characterization of new fly ash-belite cements synthesized at different temperatures. J Mater Res. 1999;14(6):2680–7.

    Article  CAS  Google Scholar 

  13. Guerrero A, Goñi S, Macías A, Luxán MP. Mechanical properties, pore-size distribution and pore solution of fly ash-belite cement mortars. Cem Concr Res. 1999;29:1753–8.

    Article  CAS  Google Scholar 

  14. Guerrero A, Goñi S, Macías A. Durability of new fly ash-belite cement mortars in sulfated and chloride medium. Cem Concr Res. 2000;30(8):1231–8.

    Article  CAS  Google Scholar 

  15. Guerrero A, Goñi S, Campillo I, Moragues A. Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Environ Sci Technol. 2004;38:3209–13.

    Article  CAS  Google Scholar 

  16. Goñi Elizalde S, Guerrero Bustos A, Moragues Terradas A, Tallafigo Vidal MF, Campillo Santos I, Sánchez Dolado J, Porro Fernández A. New belite cement clinkers from fly ash of coal combustion of high Ca content. Spanish Patent ES2199059; 2005.

  17. Goñi S, Guerrero A. SEM/EDX characterization of hydration products of belite cements from class C coal fly ash. J Am Ceram Soc. 2007;90(12):3915–22.

    Google Scholar 

  18. Goñi S, Guerrero A. Modifications of the C–S–H gel by hydration at 40°C of two types of fly ash belite cements. J Am Ceram Soc. 2008;91(1):209–14.

    Article  CAS  Google Scholar 

  19. Goñi S, Guerrero A. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium. J Hazard Mater. 2006;B137:1608–17.

    Article  CAS  Google Scholar 

  20. Guerrero A, Goñi S, Allegro VR. Resistance of Class C fly ash belite cement in simulated sodium sulphate radioactive liquid waste attack. J Hazard Mater. 2009;161:1250–4.

    Article  CAS  Google Scholar 

  21. Guerrero A, Goñi S, Allegro VR. Durability of Class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: influence of the temperature. J Hazard Mater. 2009;162:1099–102.

    Article  CAS  Google Scholar 

  22. Guerrero A, Goñi S, Allegro VR. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste. Synergy of chloride and sulphate ions. J Hazard Mater. 2009;165:903–8.

    Article  CAS  Google Scholar 

  23. Guerrero A, Goñi S, Dolado JS. Belite cements. Modifications of the C–S–H gel by alkaline hydrothermal activation. ACI Mater J. 2009;106(2):138–43.

    CAS  Google Scholar 

  24. Campillo I, Guerrero A, Dolado JS, Porro A, Ibáñez JA, Goñi S. Improve of initial mechanical strength by nano-alumina in belite cements. Mater Lett. 2007;61(8–9):1889–92.

    Article  CAS  Google Scholar 

  25. Dolado JS, Campillo I, Erkizia E, Ibáñez JA, Porro A, Guerrero A, et al. Effect of nanosilica additions on Belite cement pastes held in sulfate solutions. J Am Ceram Soc. 2007;90(12):3973–6.

    CAS  Google Scholar 

  26. Porro A, Campillo I, Sánchez J, Goñi S, Guerrero A. Cemento para construcción, y procedimiento de obtención de un cemento para construcción. US 2006 0260513, CA 2 537 283, EP 1 719 741 B1.

  27. Cherem da Cunha L, Gonzalves JP, Büchler PM, Dweck J. Effect of metakaolin pozzolanic activity in the early stages of cement type ii paste and mortar hydration. J Therm Anal Calorim. 2008;92:115–9.

    Article  CAS  Google Scholar 

  28. Pacewska B, Wiliñska I, Bukowska M. Calorimetric investigations of the influence of waste aluminosilicate on the hydration of different cements. J Therm Anal Calorim. 2009. doi:10.1007/s10973-008-9668-9.

  29. Talero R, Rahhal V. Calorimetric comparison of portland cements containing silica fume and metakaolin is silica fume, like metakaolin, characterized by pozzolanic activity that is more specific than generic? J Therm Anal Calorim. 2009. doi:10.1007/s10973-008-9096-x.

  30. Vessalas K, Thomas PS, Ray AS, Guerbois J-P, Joyce P, Haggman J. Pozzolanic reactivity of the supplementary cementitious material pitchstone fines by thermogravimetric analysis. J Therm Anal Calorim. 2009. doi:10.1007/s10973-008-9708-5.

  31. Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60:309–19.

    Article  CAS  Google Scholar 

  32. Barret EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. J Am Chem Soc. 1951;73:373–80.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Minister of Science and Technology (Project nº MAT 2002-04023-CO3) and the Thermal Power Station of Cercs Catalonia, Spain for supplying the fly ash.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Goñi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goñi, S., Guerrero, A. Study of alkaline hydrothermal activation of belite cements by thermal analysis. J Therm Anal Calorim 99, 471–477 (2010). https://doi.org/10.1007/s10973-009-0140-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0140-2

Keywords

Navigation