Skip to main content
Log in

Crystallization and melting behavior of PP/nano-CaCO3 composites with different interfacial interaction

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of different interfacial interaction on the crystallization and melting behavior of PP/nano-CaCO3 composites was investigated using differential scanning calorimetry, X-ray diffraction and polarized optical microscope. The results indicated that nano-CaCO3 acted as heterogeneous nuclei for PP crystallization. There existed a synergistic effect of heterogeneous nucleation between nano-CaCO3 and compatibilizer for PP crystallization, which was proved by increasing the crystallization rate and decreasing the fold surface free energy as well as favoring the formation of β-crystal of PP. However, this synergistic effect was dependent on the interfacial interaction between PP and compatibilizer. The increased miscibility between compatibilizer and PP favored this synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dagani R. Putting the ‘nano’ into composites. Chem Eng News. 1999;77:25–37.

    Google Scholar 

  2. Yang H, Zhang Q, Guo M, Wang C, Du RN, Fu Q. Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer. 2006;47:2106–15.

    Article  CAS  Google Scholar 

  3. Zhang H, Zhang Z. Impact behaviour of polypropylene filled with multi-walled carbon nanotubes. Eur Polym J. 2007;43:3197–207.

    Article  CAS  Google Scholar 

  4. Causin V, Marega C, Marigo A, Ferrara G, Ferraro A. Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur Polym J. 2006;42:3153–61.

    Article  CAS  Google Scholar 

  5. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng. 2000;28:1–63.

    Article  Google Scholar 

  6. Thridandapani RR, Mudaliar A, Yuan Q, Misra RDK. Near surface deformation associated with the scratch in polypropylene-clay nanocomposite: a microscopic study. Mater Sci Eng A. 2006;418:292–302.

    Article  Google Scholar 

  7. Qin HL, Zhang SM, Zhao CG, Hu GJ, Yang MS. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer. 2005;46:8386–95.

    Article  CAS  Google Scholar 

  8. Lee HS, Fasulo PD, Rodgers WR, Paul DR. TPO based nanocomposites. Part 2. Thermal expansion behavior Polymer. 2006;47:3528–39.

    Article  CAS  Google Scholar 

  9. Ma CG, Mai YL, Rong MZ, Ruan WH, Zhang MQ. Phase structure and mechanical properties of ternary polypropylene/elastomer/nano-CaCO3 composites. Compos Sci Technol. 2007;67:2997–3005.

    Article  CAS  Google Scholar 

  10. Thio YS, Argon AS, Cohen RE, Weinberg M. Toughening of isotactic polypropylene with CaCO3 particles. Polymer. 2002;43:3661–74.

    Article  CAS  Google Scholar 

  11. Zhang QX, Yu ZZ, Xie XL, Mai YW. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45:5985–94.

    Article  CAS  Google Scholar 

  12. Yang K, Yang Q, Li GX, Sun YJ, Feng DC. Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles. Polym Compos. 2006;27:443–50.

    Article  CAS  Google Scholar 

  13. Weon JI, Gam KT, Boo WJ, Sue HJ. Impact-toughening mechanisms of calcium carbonate-reinforced polypropylene nanocomposite. J Appl Polym Sci. 2006;99:3070–6.

    Article  CAS  Google Scholar 

  14. Chan CM, Wu JS, Li JX, Cheung YK. Polypropylene/calcium carbonate nanocomposites. Polymer. 2002;43:2981–92.

    Article  CAS  Google Scholar 

  15. Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ. Toughening of polypropylene with calcium carbonate particles. Polymer. 2003;44:261–75.

    Article  CAS  Google Scholar 

  16. Avella M, Cosco S, Di Lorenzo ML, Di Pace E, Errico ME, Gentile G. Nucleation activity of nanosized CaCO3 on crystallization of isotactic polypropylene, in dependence on crystal modification, particle shape, and coating. Eur Polym J. 2006;42:1548–57.

    Article  CAS  Google Scholar 

  17. Avella M, Cosco S, Di Lorenzo ML, Di Pace E, Errico ME. Influence of CaCO3 nanoparticles shape on thermal and crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2005;80:131–6.

    Article  CAS  Google Scholar 

  18. Lin ZD, Huang ZZ, Zhang Y, Mai KC, Zeng HM. Crystallization and melting behavior of nano-CaCO3/polypropylene composites modified by acrylic acid. J Appl Polym Sci. 2004;91:2443–53.

    Article  CAS  Google Scholar 

  19. Lin ZD, Zhang ZS, Huang ZZ, Mai KC. Investigation on preparation and property of nano-CaCO3/PP masterbatch modified by reactive monomers. J Appl Polym Sci. 2006;101:3907–14.

    Article  CAS  Google Scholar 

  20. Mai KC, Li ZJ, Zeng HM. Physical properties of PP-g-AA prepared by melt extrusion and its effects on mechanical properties of PP. J Appl Polym Sci. 2001;80:2609–16.

    Article  Google Scholar 

  21. Ma CG, Rong MZ, Zhang MQ, Friedrich K. Irradiation-induced surface graft polymerization onto calcium carbonate nanoparticles and its toughening effects on polypropylene composites. Polym Eng Sci. 2005;45:529–38.

    Article  CAS  Google Scholar 

  22. Wan WT, Yu DM, Xie YC, Guo XS, Zhou WD, Cao JP. Effects of nanoparticle treatment on the crystallization behavior and mechanical properties of polypropylene/calcium carbonate nanocomposites. J Appl Polym Sci. 2006;102:3480–88.

    Article  CAS  Google Scholar 

  23. Shen H, Wang YH, Mai KC. Non-isothermal crystallization behavior of PP/Mg(OH)2 composites modified by different compatibilizers. Thermochim Acta. 2007;457:27–34.

    Article  CAS  Google Scholar 

  24. Causin V, Marega C, Saini R, Marigo A, Ferrara G. Crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2007;90:849–57.

    Article  CAS  Google Scholar 

  25. Reyes-de Vaaben S, Aguilar A, Avalos F, Ramos-de Valle LF. Carbon nanoparticles as effective nucleating agents for polypropylene. J Therm Anal Calorim. 2008;93:947–52.

    Article  CAS  Google Scholar 

  26. Lin ZD, Qiu YX, Mai KC. Crystallization and melt Behavior of Mg(OH)2/PP composites modified by functionalized polypropylene. J Appl Polym Sci. 2004;92:3610–21.

    Article  CAS  Google Scholar 

  27. Seo Y, Kim J, Kim KU, Kim YC. Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer. 2000;41:2639–46.

    Article  CAS  Google Scholar 

  28. Gonzalez-Montiel A, Keskkula H, Paul DR. Morphology of nylon 6/polypropylene blends compatibilized with maleated polypropylene. J Polym Sci Polym Phys. 1995;33:1751–67.

    Article  CAS  Google Scholar 

  29. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A. Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules. 1997;30:6333–8.

    Article  CAS  Google Scholar 

  30. McNally T, McShane P, Nally GM, Murphy WR, Cook M, Miller A. Rheology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1-octene copolymer blends. Polymer. 2002;43:3785–93.

    Article  CAS  Google Scholar 

  31. Huerta-Martínez BM, Ramírez-Vargas E, Medellín-Rodríguez FJ, Cedillo García R. Compatibility mechanisms between EVA and complex impact heterophasic PP-EPx copolymers as a function of EP content. Eur Polym J. 2005;41:519–25.

    Article  Google Scholar 

  32. Di Lorenzo ML. Spherulite growth rates in binary polymer blends. Prog Polym Sci. 2003;28:663–89.

    Article  CAS  Google Scholar 

  33. Tabtiang A, Venables R. The performance of selected unsaturated coatings for calcium carbonate filler in polypropylene. Eur Polym J. 2000;36:137–48.

    Article  CAS  Google Scholar 

  34. Zhou WH, Lu M, Mai KC. Isothermal crystallization, melting behavior and crystalline morphology of syndiotactic polystyrene blends with highly-impact polystyrene. Polymer. 2007;48:3858–67.

    Article  CAS  Google Scholar 

  35. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Stand. 1956;57:217–21.

    CAS  Google Scholar 

  36. Zhang YF, Xin Z. Isothermal and nonisothermal crystallization kinetics of isotactic polypropylene nucleated with substituted aromatic heterocyclic phosphate salts. J Appl Polym Sci. 2006;101:3307–16.

    Article  CAS  Google Scholar 

  37. Jang GS, Cho WJ, Ha CS. Crystallization behavior of polypropylene with or without sodium benzoate as a nucleating agent. J Polym Sci B: Polym Phys. 2001;39:1001–16.

    Article  CAS  Google Scholar 

  38. Zhao SC, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008;49:2745–54.

    Article  CAS  Google Scholar 

  39. Hoffman JD. Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer. 1983;24:3–26.

    Article  CAS  Google Scholar 

  40. Monasse B, Haudin JM. Growth transition and morphology change in polypropylene. Colloid Polym Sci. 1985;263:822–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by Natural Science Foundation of China (Grant No. 50873115), Doctoral Fund of Ministry of Education of China and Project of Science and Technology of Guangdong Province, China (Grant No. 0711020600002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kancheng Mai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Shen, H., Li, G. et al. Crystallization and melting behavior of PP/nano-CaCO3 composites with different interfacial interaction. J Therm Anal Calorim 99, 399–407 (2010). https://doi.org/10.1007/s10973-009-0130-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0130-4

Keywords

Navigation