Skip to main content
Log in

Desorption of benzoic and stearic acid adsorbed upon montmorillonites: a thermogravimetric study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The desorption of benzoic acid and stearic acid from sodium and calcium montmorillonites has been studied using thermogravimetric and differential thermogravimetric analysis. Desorption of benzoic acid from sodium montmorillonites occurs at 140 °C and from calcium montmorillonites at 179 °C. This increase in temperature is attributed to the benzoic acid bonding to the calcium in the interlayer. A lowering of the dehydroxylation temperature of montmorillonites is observed with acid adsorption. Stearic acid desorbs at 218 °C as observed by the DTG curves. The desorption pattern differs between the sodium montmorillonites and the calcium montmorillonites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kennedy MJ, Pevear DR, Hill RJ. Mineral surface control of organic carbon in black shale. Science. 2002;295:657–60.

    Article  CAS  Google Scholar 

  2. Greene-Kelly R. Sorption of aromatic organic compounds by montmorillonite. I. Orientation studies. Trans Faraday Soc. 1955;51:412–24.

    Article  CAS  Google Scholar 

  3. Greenland DJ, Laby RH, Quirk JP. Adsorption of amino acids and peptides by montmorillonite and illite. I. Cation exchange and proton transfer. Trans Faraday Soc. 1965;61:2013–23.

    Article  CAS  Google Scholar 

  4. Heller-Kallai L, Aizenshtat Z, Miloslavski I. The effect of various clay minerals on the thermal decomposition of stearic acid under ‘bulk flow’ conditions. Clay Miner. 1984;19:779–88.

    Article  CAS  Google Scholar 

  5. Sieskind O, Ourisson G. Clay-organic matter interactions. Formation of complexes between montmorillonite and stearic and behenic acids. Comptes Rendus des Seances de l’Academie des Sciences, Serie C: Sciences Chimiques. 1971;272:1885–8.

    CAS  Google Scholar 

  6. Yan L-G, Wang J, Yu H-Q, Wei Q, Du B, Shan X-Q. Adsorption of benzoic acid by CTAB exchanged montmorillonite. Appl Clay Sci. 2007;37:226–30.

    Article  CAS  Google Scholar 

  7. Yariv S, Lapides I. The effect of mechanochemical treatments on clay minerals and the mechanochemical adsorption of organic materials onto clay minerals. J Mater Synth Process. 2000;8:223–33.

    Article  CAS  Google Scholar 

  8. Adu-Wusu K, Whang JM, McDevitt MF. Modification of clay-based waste containment materials, Conference proceedings—international containment technology conference, St. Petersburg, FL, Feb 9–12, 1997. p. 665–671.

  9. Akcay G, Yurdakoc K. Removal of various phenoxyalkanoic acid herbicides from water by organo-clays. Acta Hydrochim Hydrobiol. 2000;28:300–4.

    Article  CAS  Google Scholar 

  10. Alther GR. Organoclay filtration technology for oil removal. Adv Filtr Sep Technol. 1999;13B:945–52.

    CAS  Google Scholar 

  11. Alther GR. Organoclays remove humic substances from water. Spec Publ R Soc Chem. 2000;259:277–88.

    CAS  Google Scholar 

  12. Alther G. Soil and groundwater remediation with organoclay. Contam Soils. 2001;6:225–31.

    CAS  Google Scholar 

  13. Bhatt J, Bhalala BT. Use of organo-clay for decolorizing colored wastewater from the textile industry. Vijnana Parishad Anusandhan Patrika. 1995;38:249–54.

    CAS  Google Scholar 

  14. Alther GR. Stormwater treatment. Water Environ Technol. 2001;13:31–4.

    CAS  Google Scholar 

  15. Alther GR. Removal of emulsified oil from wastewater. Fluid/Part Sep J. 2000;13:146–51.

    CAS  Google Scholar 

  16. Srinivasan KR, Fogler HS. Use of inorgano-organo-clays in industrial wastewater treatment. Organohalogen Compd. 1990;3:417–20.

    CAS  Google Scholar 

  17. Springman K, Mayura K, McDonald T, Donnelly KC, Kubena LF, Phillips TD. Organoclay adsorption of wood-preserving waste from groundwater. Analytical and toxicological evaluations. Toxicol Environ Chem. 1999;71:247–59.

    Article  CAS  Google Scholar 

  18. Brixie JM, Boyd SA. Treatment of contaminated soils with organoclays to reduce leachable pentachlorophenol. J Environ Qual. 1994;23:1283–90.

    Article  CAS  Google Scholar 

  19. Cruz-Guzman M, Celis R, Hermosin MC, Cornejo J. Sorption of the herbicide simazine by biomolecule-modified clays, Pesticide in Air, Plant, Soil & Water System, Proceedings of the Symposium Pesticide Chemistry, 12th, Piacenza, Italy, June 4–6, 2003. p. 185–191.

  20. Carrizosa MJ, Hermosin MC, Koskinen WC, Cornejo J. Use of organosmectites to reduce leaching losses of acidic herbicides. Soil Sci Soc Am J. 2003;67:511–7.

    CAS  Google Scholar 

  21. Sand ID, Piner RL, Gilmer JW, Owens JT. Organoclays as processing aids for plasticized thermoplastics. USA: U.S. Eastman Chemical Company, Us; 2003. 8 pp.

  22. Rafailovich M, Si M, Goldman M. Flame retardant and UV absorptive polymethylmethacrylate nanocomposites. PCT Int. Appl. USA: The Research Foundation of State University of New York; Wo, 2003. 34 pp.

  23. Meincke O, Hoffmann B, Dietrich C, Friedrich C. Viscoelastic properties of polystyrene nanocomposites based on layered silicates. Macromol Chem Phys. 2003;204:823–30.

    Article  CAS  Google Scholar 

  24. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K. New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater. 2002;14:4654–61.

    Article  CAS  Google Scholar 

  25. Chaiko D. Preparation of organoclays with improved dispersibility from smectites and kaolin clays by coating clays with water-soluble polymer. PCT Int. Appl. USA: University of Chicago; Wo, 2002. 24 pp.

  26. Nzengung VA, Organoclays as sorbents for organic contaminants in aqueous and mixed-solvent systems. GA: Georgia Institute Technology, FIELD URL; 1993. 191 pp.

  27. Soule NM, Burns SE. Effects of organic cation structure on behavior of organobentonites. J Geotech Geoenviron Eng. 2001;127:363–70.

    Article  CAS  Google Scholar 

  28. Earnest CM. Characterization of smectite clay minerals by differential thermal analysis and thermogravimetry. Part I. Montmorillonite. Perkin-Elmer Thermal Analysis Application Study 31, Pt. 1; 1980. 8 pp.

  29. Yariv S. Differential thermal analysis (DTA) in the study of thermal reactions of organo-clay complexes. Natural and Laboratory-Simulated Thermal Geochemical Processes; 2003. p. 253–296.

  30. Yariv S. The role of charcoal on DTA curves of organo-clay complexes: an overview. Appl Clay Sci. 2004;24:225–36.

    Article  CAS  Google Scholar 

  31. Yariv S, Ovadyahu D, Nasser A, Shuali U, Lahav N. Thermal analysis study of heat of dehydration of tributylammonium smectites. Thermochim Acta. 1992;207:103–13.

    Article  CAS  Google Scholar 

  32. Pramoda KP, Liu T, Liu Z, He C, Sue H-J. Thermal degradation behavior of polyamide 6/clay nanocomposites. Polym Degrad Stab. 2003;81:47–56.

    Article  CAS  Google Scholar 

  33. Carmody O, Frost R, Xi Y, Kokot S. Selected adsorbent materials for oil-spill cleanup. A thermoanalytical study. J Therm Anal Calorim. 2008;91:809–16.

    Article  CAS  Google Scholar 

  34. Frost RL, Locke A, Martens WN. Thermogravimetric analysis of wheatleyite Na2Cu2+ (C2O4)2 · 2H2O. J Therm Anal Calorim. 2008;93:993–7.

    Article  CAS  Google Scholar 

  35. Frost RL, Locke AJ, Hales MC, Martens WN. Thermal stability of synthetic aurichalcite. Implications for making mixed metal oxides for use as catalysts. J Therm Anal Calorim. 2008;94:203–8.

    Article  CAS  Google Scholar 

  36. Frost RL, Locke AJ, Martens W. Thermal analysis of beaverite in comparison with plumbojarosite. J Therm Anal Calorim. 2008;92:887–92.

    Article  CAS  Google Scholar 

  37. Frost RL, Wain D. A thermogravimetric and infrared emission spectroscopic study of alunite. J Therm Anal Calorim. 2008;91:267–74.

    Article  CAS  Google Scholar 

  38. Hales MC, Frost RL. Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim. 2008;91:855–60.

    Article  CAS  Google Scholar 

  39. Palmer SJ, Frost RL, Nguyen T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim. 2008;92:879–86.

    Article  CAS  Google Scholar 

  40. Vagvoelgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.

    Article  Google Scholar 

  41. Vagvoelgyi V, Hales M, Frost RL, Locke A, Kristof J, Horvath E. Conventional and controlled rate thermal analysis of nesquehonite Mg(HCO3)(OH) · 2(H2O). J Therm Anal Calorim. 2008;94:523–8.

    Google Scholar 

  42. Vagvolgyi V, Daniel LM, Pinto C, Kristof J, Frost RL, Horvath E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.

    Google Scholar 

  43. Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    Article  CAS  Google Scholar 

  44. Vagvolgyi V, Hales M, Martens W, Kristof J, Horvath E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.

    Article  CAS  Google Scholar 

  45. Zhao Y, Frost RL, Vagvolgyi V, Waclawik ER, Kristof J, Horvath E. XRD, TEM and thermal analysis of yttrium doped boehmite nanofibres and nanosheets. J Therm Anal Calorim. 2008;94:219–26.

    Article  CAS  Google Scholar 

  46. Kristof J, Frost RL, Kloprogge JT, Horvath E, Mako E. Detection of four different OH-groups in ground kaolinite with controlled-rate thermal analysis. J Therm Anal Calorim. 2002;69:77–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial and infra-structure support of the Queensland University of Technology Inorganic Materials Research Program is gratefully acknowledged. The Australian Research Council (ARC) is thanked for funding the Thermal Analysis Facility. Financial supports from the National Natural Science Foundation of China through Grant Nos: 40672085 and 40872089) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Frost, R.L. & Cai, J. Desorption of benzoic and stearic acid adsorbed upon montmorillonites: a thermogravimetric study. J Therm Anal Calorim 99, 377–384 (2010). https://doi.org/10.1007/s10973-009-0125-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0125-1

Keywords

Navigation