Skip to main content
Log in

Thermal stabilities of new synthesized N-methoxy-polynitroanilines derivatives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of new N-methoxy-polynitroanilines was studied using the differential scanning calorimetry (DSC) method. The characteristic melting parameters were measured and the activation parameters of the most probable kinetic models of thermal decomposition were determined using a multivariate non-linear regression method. All investigated compounds followed an autocatalytic decomposition mechanism. Depending on the number and position of substituents on the aromatic ring the thermal decomposition occurs in one, two or three steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rongzu H, Desuo Y, Hongan Z, Shengli G, Qizhen S. Kinetics and mechanism of the exothermic first-stage decomposition reaction for 1,4-dinitro-3,6-bis(trinitroethyl)glycoluril. Thermochim Acta. 2002;389:65–9.

    Article  Google Scholar 

  2. Brown ME. Thermal analysis of energetic materials. Thermochim Acta. 1988;148:521–31.

    Article  CAS  Google Scholar 

  3. Vogel K, Widmann G. Investigating safety aspects by thermal analysis. J Therm Anal. 1989;35:329–34.

    Article  CAS  Google Scholar 

  4. Pickard JM. Application of rigorous nonlinear regression to the decomposition kinetics of explosives. Thermochim Acta. 1989;149:301–15.

    Article  CAS  Google Scholar 

  5. Grewer Th, Frurip DJ, Harrison BK. Prediction of thermal hazards of chemical reactions. J Loss Prev Proc Ind. 1999;12:391–8.

    Article  Google Scholar 

  6. Zeman S. Thermogravimetric analysis of polynitro arenes. J Therm Anal Calorim. 2001;65:919–33.

    Article  CAS  Google Scholar 

  7. Ksiazczak A, Ksiazczak T, Zielenkiewicz T. Influence of purity on the thermal stability of solid organic compounds. J Therm Anal Calorim. 2004;77:233–42.

    Article  CAS  Google Scholar 

  8. Long GT, Brems BA, Wight ChA. Autocatalytic thermal decomposition kinetics of TNT. Thermochim Acta. 2002;388:175–81.

    Article  CAS  Google Scholar 

  9. Chervin S, Bodman GT. Phenomenon of autocatalysis in decomposition of energetic chemicals. Thermochim Acta. 2002;392–393:371–83.

    Article  Google Scholar 

  10. Bon-Diab L, Fierz H. Autocatalytic decomposition reactions, hazards and detection. J Hazard Mater. 2002;93:137–46.

    Article  Google Scholar 

  11. Stanciuc G, Constantinescu T, Caproiu MT, Zarna N, Caragheorgheopol A, Caldararu H, et al. Self-nitration of N-alkoxy-dinitroanilines as result of oxidation processes. Rev Roum Chim. 1997;42:395–400.

    Google Scholar 

  12. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Applications to a phenol plastic. J Polym Sci. 1963;6C:183–95.

    Google Scholar 

  13. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  14. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70A:487–523.

    Google Scholar 

  15. Beteringhe A. QSPR study on pKa values of N-methoxy-polynitroaniline. Cent Eur J Chem. 2005;3(4):585–91.

    Article  CAS  Google Scholar 

  16. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  17. Flammersheim H-J, Opfermann JR. Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions. Thermochim Acta. 2002;388:389–400.

    Article  CAS  Google Scholar 

  18. Ranga Reddy S, ManikYamba P. Linear free energy relationship in reactions between diphenyl amine and benzyl bromides. J Chem Sci. 2006;118(3):257–60.

    Article  Google Scholar 

  19. Fukuhara K, Akisue M, Matsuura H. Melting of the all-trans planar modification of triblock oligomers α-n-alkyl-ω-n-alkoxyoligo(oxyethylene)s. Chem Lett. 2001;30(8):828–30.

    Article  Google Scholar 

  20. Brown ME, Galwey AK. The significance of “compensation effects” appearing in data published in computational aspects of kinetic analysis: ICTAC project, 2000. Thermochim Acta. 2002;387:173–83.

    Article  CAS  Google Scholar 

  21. Budrugeac P, Segal E. Non-isothermal kinetics of reactions whose activation energy depends on the degree of conversion. Thermochim Acta. 1995;260:75–85.

    Article  CAS  Google Scholar 

  22. Budrugeac P, Segal E. On the compensation effect at the form of the differential conversion function. J Therm Anal Calorim. 1998;53:269–83.

    Article  CAS  Google Scholar 

  23. Budrugeac P, Segal E. On the apparent compensation effect found for two consecutive reactions. J Therm Anal Calorim. 2000;62:227–35.

    Article  CAS  Google Scholar 

  24. Norwisz J, Musielak T. Compensation law again. J Therm Anal Calorim. 2007;88(3):751–5.

    Article  CAS  Google Scholar 

  25. Dias DS, Crespi MS, Ribeiro CA, Fernandes JLS, Cerqueira HMG. Application of non-isothermal cure kinetics on the interaction of poly(ethylene terephthalate)—alkyd resin paints. J Therm Anal Calorim. 2008;91(2):409–12.

    Article  CAS  Google Scholar 

  26. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  27. Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  CAS  Google Scholar 

  28. Mandel J. The statistical analysis of experimental data, Chap. 6–7. New York; 1984.

  29. Marinoiu V, Stratula C, Petcu A, Patrascioiu C, Marinescu C. Metode numerice aplicate in ingineria chimica, Ed.Tehnica 1986.

  30. Brown ME, Dollimore D, Galwey AK. Comprehensive chemical kinetics. vol. 22. Amsterdam: Elsevier; 1980.

  31. Brill TB, James KJ. Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev. 1993;93:2667–92.

    Article  CAS  Google Scholar 

  32. Duh YS, Lee C, Hsu CC, Hwang DR, Kao CS. Chemical incompatibility of nitrocompounds. J Hazard Mater. 1997;53:183–94.

    Article  CAS  Google Scholar 

  33. Brill TA, James KJ. Thermal decomposition of energetic materials. 662. Reconciliation of the kinetics and mechanisms of TNT on the time scale from microseconds to hours. J Phys Chem. 1993;97:8759–63.

    Article  CAS  Google Scholar 

  34. Zeman S, Zemanova E. Possibilities of applying the Piloyan method of determination of decomposition activation energies in the differential thermal analysis of polynitroaromatic compounds and their derivatives Part VI. Relationships found between chromatographic and thermal analysis data for N-substituted 2,6-dinitroanilines. J Therm Anal Calorim. 1981;20:87–92.

    Article  CAS  Google Scholar 

  35. Zeman S, Dimun M, Truchlik S. The relationship between kinetic data of the low-temperature thermolysis and the heats of explosion of organic polynitro compounds. Thermochim Acta. 1984;78:181–209.

    Article  CAS  Google Scholar 

  36. Zeman S. Possibilities of applying the Piloyan method of determination of decomposition activation energies in the differential thermal analysis of polynitroaromatic compounds and of their derivatives Part I. Polymethyl and polychloro derivatives of 1,3,5-trinitro-benzene. J Therm Anal. 1979;17(1):19–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to Dr. Titus Constantinescu from the Laboratory of Supramolecular Chemistry and Interphase Processes, “Ilie Murgulescu” Institute of Physical Chemistry, for providing the studied compounds and the related literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adina Magdalena Musuc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musuc, A.M., Razus, D. & Oancea, D. Thermal stabilities of new synthesized N-methoxy-polynitroanilines derivatives. J Therm Anal Calorim 98, 779–784 (2009). https://doi.org/10.1007/s10973-009-0123-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0123-3

Keywords

Navigation