Skip to main content
Log in

Study of kinetics and thermodynamics of the dehydration reaction of AlPO4 · H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics and thermodynamics of the thermal dehydration of aluminum phosphate monohydrate, AlPO4 · H2O were studied using thermogravimetry (TG-DTG-DTA) at four heating rates in dry air atmosphere. The activation energies of the dehydration step of AlPO4 · H2O were calculated through the methods of Friedman (FR) and Flynn–Wall–Ozawa (FWO) and the possible conversion function has been estimated through the Achar and Li–Tang equations. The independent activation energies on extent of conversions and the better kinetic model of the dehydration reaction for AlPO4 · H2O indicate single kinetic mechanism and the F 2.05 model as a simple n-order reaction of “chemical process or mechanism no-invoking equation”, respectively. The positive values of ΔH# and ΔG# for the dehydration reaction show that it is endothermic and non-spontaneous process and it is connected with the introduction of heat. The kinetic and thermodynamic functions calculated for the dehydration reaction by different techniques and methods were found to be consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arjona MA, Alario Franco MA. Kinetics of the thermal dehydration of variscite and specific surface area of the solid decomposition products. J Therm Anal Cal. 1973;5:319–28.

    Article  Google Scholar 

  2. Stojakovic D, Rajic N, Sajic S, Logar NZ, Kaucic V. A kinetic study of the thermal degradation of 3-methylaminopropylamine inside AlPO4-21. J Therm Anal Cal. 2007;87:337–43.

    Article  CAS  Google Scholar 

  3. Lagno F, Demopoulos GP. Synthesis of hydrated aluminum phosphate, AlPO4·1.5H2O (AlPO4−H3), by controlled reactive crystallization in sulfate media. Ind Eng Chem Res. 2005;44:8033–8.

    Article  CAS  Google Scholar 

  4. Youssif MI, Mohamed FSh, Aziz MS. Chemical and physical properties of Al1−xFexPO4 alloys: Part I. Thermal stability, magnetic properties and related electrical conductivity. Mater Chem Phys. 2004;83:250–254.

    Article  CAS  Google Scholar 

  5. Guti′errez-Mora F, Goretta KC, Singh D, Routbort JL, Sambasivan S, Steiner KA, et al. High-temperature deformation of amorphous AlPO4-based nano-composites. J Eur Ceram Soc. 2006;26:1179–83.

    Article  Google Scholar 

  6. Mostafa MR, Ahmed FSh. Characterization and catalytic behaviour of Co3(PO4)2-AlPO4 catalysts. Adsorp Sci Technol. 1998;16:285–93.

    CAS  Google Scholar 

  7. Campelo JM, Jaraba M, Luna D, Luque R, Marinas JM, Romero AA, et al. Effect of phosphate precursor and organic additives on the structural and catalytic properties of amorphous mesoporous AlPO4 materials. Mater Chem Mater. 2003;15:3352–64.

    Article  CAS  Google Scholar 

  8. Boonchom B, Youngme S, Srithanratana T, Danvirutai C. Synthesis of AlPO4 and kinetics of thermal decomposition of AlPO4·H2O-H4 precursor. J Therm Anal Cal. 2008;91:511–6.

    Article  CAS  Google Scholar 

  9. Boonchom B, Danvirutai C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Cal (Accepted manuscript).

  10. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. J Polym Sci C. 1963;6:183.

    Google Scholar 

  11. Flynn H, Wall LA. Quick direct method for the determination of activation energy from thermogravimetric data. J Therm Anal. 1983;27:95.

    Article  CAS  Google Scholar 

  12. Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  13. Achar BNN, Bridley GW, Sharp JH. Kinetics and mechanism of dehydroxylation process.III. Applications and limitations of dynamic methods. Proc Int Clay Conf, Jerusalem. 1966;1:67–73.

    Google Scholar 

  14. Tang W, Liu Y, Zhang H, Wang C. New approximate formula for Arrhenius temperature integral. Thermaochim Acta. 2003;408:39–43.

    Article  CAS  Google Scholar 

  15. Scaccia S, Carewska M, Bartolomeo AD, Prosini PP. Thermoanalytical investigation of nanocrystalline iron (II) phosphate obtained by spontaneous precipitation from aqueous solutions. Thermochim Acta. 2003;397:135–41.

    Article  CAS  Google Scholar 

  16. Gabal MA, El-Bellihi AA, Ata-Allah SS. Effect of calcination temperature on Co(II) oxalate dihydrate−iron(II) oxalate dihydrate mixture DTA− TG, XRD, Mössbauer, FT-IR and SEM studies (Part II). Mater Chem Physics. 2003;81:84–92.

    Article  CAS  Google Scholar 

  17. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  18. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Cal. 2003;72:597–604.

    Article  CAS  Google Scholar 

  19. Rokita M, Handke M, Mozgawa W. Spectroscopic studies of polymorphs of AlPO4 and SiO2. J Mol Struct. 1998;450:213–7.

    Article  CAS  Google Scholar 

  20. Müller G, Bódis J, Eder-Mirth G, Kornatowski J, Lercher JA. In situ FT-IR microscopic investigation of metal substituted AlPO4-5 single crystals. J Mol Struct. 1997;410–411:173–8.

    Article  Google Scholar 

  21. Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. New York: Academic Press; 1964.

    Google Scholar 

  22. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

  23. Budrugeac P, Segal E. Applicability of the Kissinger equation in thermal analysis. J Therm Anal Cal. 2007;88:703–7.

    Article  CAS  Google Scholar 

  24. Budrugeac P, Muşat V, Segal E. Non-isothermal kinetic study on the decomposition of Zn acetate-based sol-gel precursor Part II. The application of the IKP method. J Therm Anal Cal. 2007;88:699–702.

    Article  CAS  Google Scholar 

  25. Zhang K, Hong J, Cao G, Zhan D, Tao Y, Cong C. The kinetics of thermal dehydration of copper(II) acetate monohydrate in air. Thermochim Acta. 2005;437:145–9.

    Article  CAS  Google Scholar 

  26. Hong J, Guo G, Zhang K. Kinetics and mechanism of non-isothermal dehydration of nickel acetate tetrahydrate in air. J Anal Appl Pyrolysis. 2006;2:111–5.

    Article  Google Scholar 

  27. Gao X, Dollimore D. The thermal decomposition of oxalates. Part 26: a kinetic study of the thermal decomposition of manganese (II) oxalate dihydrate. Thermochim Acta. 1993;215:47–63.

    Article  CAS  Google Scholar 

  28. Gabal MA. Kinetics of the thermal decomposition of CuC2O4–ZnC2O4 mixture in air. Thermochim Acta. 2003;402:199–208.

    Article  CAS  Google Scholar 

  29. Boonchom B, Danvirutai C. Thermal decomposition kinetics of FePO4·3H2O precursor to synthetize spherical nanoparticles FePO4. Ind Eng Chem Res. 2007;46:9071–6.

    Article  CAS  Google Scholar 

  30. J. Ŝesták. Thermodynamical properties of solids. Academia Prague; 1984.

  31. Cordes HM. Preexponential factors for solid-state thermal decomposition. J Phys Chem. 1968;72:2185–9.

    Article  CAS  Google Scholar 

  32. Criado JM, Pérez-Maqueda LA, Sánchez-Jiménez PE. Dependence of the preexponential factor on temperature. J Therm Anal Cal. 2005;82:671–5.

    Article  CAS  Google Scholar 

  33. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1553–8.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Chemistry and Physics Departments, Khon Kaen University for providing research facilities. This work is financially supported by Thailand Research Fund (TRF) and the Commission on Higher Education (CHE): Research Grant for New Scholar (MRG5280073), Ministry of Science and Technology, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banjong Boonchom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonchom, B., Kongtaweelert, S. Study of kinetics and thermodynamics of the dehydration reaction of AlPO4 · H2O. J Therm Anal Calorim 99, 531–538 (2010). https://doi.org/10.1007/s10973-009-0113-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0113-5

Keywords

Navigation