Skip to main content
Log in

Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bio-composite fibers were developed from wood pulp and polypropylene (PP) by an extrusion process. The thermo-physical and mechanical properties of wood pulp-PP composite fibers, neat PP and wood pulp were studied using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The thermal stability of bio-composite fibers was found to be significantly higher than pure wood pulp. An understanding into the melting behaviour of the composite system was obtained which would assist in selecting a suitable temperature profile for the extruder during processing. The visco-elastic properties of bio-composite fibers were also revealed from the study. The generated bio-composite fibers were also characterized using Fourier transform infrared spectroscopy (FTIR) to understand the nature of chemical interaction between wood pulp reinforcement and PP matrix. The use of maleated polypropylene (MAPP) as a compatibilizer was investigated in relation to the fiber microstructure. Changes in absorption peaks were observed in FTIR spectra of bio-composite fibers as compared to the pure wood pulp which indicated possible chemical linkages between the fiber and polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Sain M. Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos. 2005;24:121–30.

    Article  CAS  Google Scholar 

  2. Wang B, Sain M. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol. 2007;67:2521–7.

    Article  CAS  Google Scholar 

  3. Oksman K, Skrifvars M, Selin JF. Natural fibers as reinforced in polylactic acid (PLA). Compos Sci Technol. 2003;63:1317–24.

    Article  CAS  Google Scholar 

  4. Saheb D, Jog JP. Natural fiber polymer composites: a review. Adv Polym Sci. 1999;18:351–63.

    Article  CAS  Google Scholar 

  5. Hornsby PR, Hinrichen E, Tarverdi K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers: part II analysis of composite microstructure and mechanical properties. J Mater Sci. 1997;32:1009–15.

    Article  CAS  Google Scholar 

  6. Heijenrath R, Peijs T. Natural fibre-mat-reinforced thermoplastic composites based on flax fibres and poplypropylene. Adv Compos Lett. 1996;5:81–5.

    Google Scholar 

  7. Mieck KP, Nechwatal A, Knobedorf C. Potential applications of natural fibres in composite materials. Melli Text. 1994;11:228–30 (in English).

    Google Scholar 

  8. Dányádi L, Renner K, Szabó Z, Nagy G, Móczó J, Pukánszky B. Wood flour filled pp composites: adhesion, deformation, failure. Polym Adv Technol. 2006;17:967–74.

    Article  Google Scholar 

  9. Nachtigall S, Cerveira G, Rosa S. New polymeric-coupling agent for polypropylene/wood-flour composites. Polym Test. 2007;26:619–28.

    Article  CAS  Google Scholar 

  10. Dominkovics Z, Dányádi L, Punkánszky B. Surface modification of wood flour and its effect on the properties of pp/wood composites. Composites A. 2007;38:1893–901.

    Article  Google Scholar 

  11. Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63:1259–64.

    Article  CAS  Google Scholar 

  12. Herrera-Franco PJ, Valadez-Gonzalez A. Mechanical properties of continuous natural-reinforced polymer composites. Composites A. 2004;35:339–45.

    Article  Google Scholar 

  13. Bouza R, Marco C, Ellis G, Martin Z, Gómez MA, Barral L. Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008;94:119–27.

    Article  CAS  Google Scholar 

  14. Li Y, Mai YW, Ye L. Sisal fibre and its composites: a review of recent developments. Compos Sci Technol. 2000;60:2037–55.

    Article  CAS  Google Scholar 

  15. Hepwoth DG, Hobson RN, Bruce DM, Farrent JW. The use of unretted hemp fibre in composite manufacture. Composites. 2000;A3:1279–83.

    Google Scholar 

  16. Rozman HD, Tan KW, Kumar RN, Abubakar A, Ishak ZAM, Ismail H. The effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. Eur Polym J. 2000;36:1483–94.

    Article  CAS  Google Scholar 

  17. Douglas P, Murphy WR, McNally G, Billham M. ANTEC. 2003; 2029–33.

  18. Li TQ, Ng CN, Li RKY. Impact behavior of sawdust/recycled PP composites. J Appl Polym Sci. 2001;81:1420–8.

    Article  CAS  Google Scholar 

  19. Arbelaiz A, Fernández B, Cantero G, Liano-Ponto R, Valea A, Mondragon I. Mechanical properties of flax fibre/polypropylene composites: influence of fibre/matrix modification and glass fibre hybridization. Composites A. 2005;36:1637–44.

    Article  Google Scholar 

  20. Jain S, Kumar R, Jindal UC. Mechanical behaviour of bamboo and composite. J Mater Sci. 1992;27:4598–604.

    Article  CAS  Google Scholar 

  21. Aziz SH, Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1 - polyester resin matrix. Compos Sci Technol. 2004;64:1219–30.

    Article  CAS  Google Scholar 

  22. Glassar WG, Razaina R, Jain RK, Kander R. Fibre-reinforced cellulosic thermoplastic composites. J Appl Polym Sci. 1999;73:1329–40.

    Article  Google Scholar 

  23. Bledzki AK, Gassan J. Composite reinforced with cellulose based fibres. Prog Polym Sci. 1999;24:221–74.

    Article  CAS  Google Scholar 

  24. Causin V, Marega C, Saini R, Marigo A, Ferrara G. Crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2007;90:849–57.

    Article  CAS  Google Scholar 

  25. Moore EP. Polypropylene handbook. Hanser: Cincinnati; 1996.

  26. Amash A, Zugenmaier P. Study on cellulose and xylan filled polypropylene composites. Poly Bull. 1998;40:251–8.

    Article  CAS  Google Scholar 

  27. Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Selected thermoanalytical methods and their applications from medicine to construction. J Therm Anal Calorim. 2007;90:653–62.

    Article  CAS  Google Scholar 

  28. Ehrenstein GW, Riedel G, Trawiel P. Thermal analysis of plastics. Hanser: Cincinnati; 2004.

  29. Dean JA. The analytical chemistry handbook. New York: McGraw Hill Inc.; 1995. p. 15.1–5.

    Google Scholar 

  30. Pungor E. A practical guide to instrument analysis. Florida: Boca Raton; 1995. p. 181–91.

    Google Scholar 

  31. Douglas S, Hollar FJ, Nieman T. Principles of instrumental analysis. 5th ed. McGraw-Hill: New York; 1998. p. 905.

  32. Chew S, Sim A. In: 5th IPFA 95, Singapore; 1995. pp. 181–8.

  33. Harper D, Wolcott M. Interaction between coupling agent and lubricants in wood-polypropylene composites. Composites A. 2004;35:385–94.

    Article  Google Scholar 

  34. Wang Z, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZ, et al. Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer. 2001;42:7561–6.

    Article  CAS  Google Scholar 

  35. Qiu W, Zhang F, Endo T, Hirotsu T. Effect of maleated poplypropylene on the performance of polypropylene/cellulose composite. Polym Compos. 2005;26:448–53.

    Article  CAS  Google Scholar 

  36. Proniewicz LM, Paluszkiewicz C, Birczńska AW, Majcherezyk H, Barański A, Konieczna A. FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct. 2001;596:163–9.

    Article  CAS  Google Scholar 

  37. Mwaikambo LY, Ansell MP. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci. 2002;84:2222–34.

    Article  CAS  Google Scholar 

  38. Luo X, Benson RS, Kit KM, Dever M. Kudzu fiber-reinforcement polymer composites. J Appl Polym Sci. 2002;85:1961–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge financial support of this study provided by the Ontario Centres of Excellence, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Awal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awal, A., Ghosh, S.B. & Sain, M. Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers. J Therm Anal Calorim 99, 695–701 (2010). https://doi.org/10.1007/s10973-009-0100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0100-x

Keywords

Navigation