Journal of Thermal Analysis and Calorimetry

, Volume 99, Issue 2, pp 695–701 | Cite as

Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers

Article

Abstract

Bio-composite fibers were developed from wood pulp and polypropylene (PP) by an extrusion process. The thermo-physical and mechanical properties of wood pulp-PP composite fibers, neat PP and wood pulp were studied using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The thermal stability of bio-composite fibers was found to be significantly higher than pure wood pulp. An understanding into the melting behaviour of the composite system was obtained which would assist in selecting a suitable temperature profile for the extruder during processing. The visco-elastic properties of bio-composite fibers were also revealed from the study. The generated bio-composite fibers were also characterized using Fourier transform infrared spectroscopy (FTIR) to understand the nature of chemical interaction between wood pulp reinforcement and PP matrix. The use of maleated polypropylene (MAPP) as a compatibilizer was investigated in relation to the fiber microstructure. Changes in absorption peaks were observed in FTIR spectra of bio-composite fibers as compared to the pure wood pulp which indicated possible chemical linkages between the fiber and polymer matrix.

Keywords

Wood pulp Polypropylene Bio-composite fiber Extrusion Thermal properties 

Notes

Acknowledgements

The authors would like to gratefully acknowledge financial support of this study provided by the Ontario Centres of Excellence, Canada.

References

  1. 1.
    Sain M. Interface modification and mechanical properties of natural fiber-polyolefin composite products. J Reinf Plast Compos. 2005;24:121–30.CrossRefGoogle Scholar
  2. 2.
    Wang B, Sain M. Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol. 2007;67:2521–7.CrossRefGoogle Scholar
  3. 3.
    Oksman K, Skrifvars M, Selin JF. Natural fibers as reinforced in polylactic acid (PLA). Compos Sci Technol. 2003;63:1317–24.CrossRefGoogle Scholar
  4. 4.
    Saheb D, Jog JP. Natural fiber polymer composites: a review. Adv Polym Sci. 1999;18:351–63.CrossRefGoogle Scholar
  5. 5.
    Hornsby PR, Hinrichen E, Tarverdi K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibers: part II analysis of composite microstructure and mechanical properties. J Mater Sci. 1997;32:1009–15.CrossRefGoogle Scholar
  6. 6.
    Heijenrath R, Peijs T. Natural fibre-mat-reinforced thermoplastic composites based on flax fibres and poplypropylene. Adv Compos Lett. 1996;5:81–5.Google Scholar
  7. 7.
    Mieck KP, Nechwatal A, Knobedorf C. Potential applications of natural fibres in composite materials. Melli Text. 1994;11:228–30 (in English).Google Scholar
  8. 8.
    Dányádi L, Renner K, Szabó Z, Nagy G, Móczó J, Pukánszky B. Wood flour filled pp composites: adhesion, deformation, failure. Polym Adv Technol. 2006;17:967–74.CrossRefGoogle Scholar
  9. 9.
    Nachtigall S, Cerveira G, Rosa S. New polymeric-coupling agent for polypropylene/wood-flour composites. Polym Test. 2007;26:619–28.CrossRefGoogle Scholar
  10. 10.
    Dominkovics Z, Dányádi L, Punkánszky B. Surface modification of wood flour and its effect on the properties of pp/wood composites. Composites A. 2007;38:1893–901.CrossRefGoogle Scholar
  11. 11.
    Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63:1259–64.CrossRefGoogle Scholar
  12. 12.
    Herrera-Franco PJ, Valadez-Gonzalez A. Mechanical properties of continuous natural-reinforced polymer composites. Composites A. 2004;35:339–45.CrossRefGoogle Scholar
  13. 13.
    Bouza R, Marco C, Ellis G, Martin Z, Gómez MA, Barral L. Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008;94:119–27.CrossRefGoogle Scholar
  14. 14.
    Li Y, Mai YW, Ye L. Sisal fibre and its composites: a review of recent developments. Compos Sci Technol. 2000;60:2037–55.CrossRefGoogle Scholar
  15. 15.
    Hepwoth DG, Hobson RN, Bruce DM, Farrent JW. The use of unretted hemp fibre in composite manufacture. Composites. 2000;A3:1279–83.Google Scholar
  16. 16.
    Rozman HD, Tan KW, Kumar RN, Abubakar A, Ishak ZAM, Ismail H. The effect of lignin as a compatibilizer on the physical properties of coconut fiber-polypropylene composites. Eur Polym J. 2000;36:1483–94.CrossRefGoogle Scholar
  17. 17.
    Douglas P, Murphy WR, McNally G, Billham M. ANTEC. 2003; 2029–33.Google Scholar
  18. 18.
    Li TQ, Ng CN, Li RKY. Impact behavior of sawdust/recycled PP composites. J Appl Polym Sci. 2001;81:1420–8.CrossRefGoogle Scholar
  19. 19.
    Arbelaiz A, Fernández B, Cantero G, Liano-Ponto R, Valea A, Mondragon I. Mechanical properties of flax fibre/polypropylene composites: influence of fibre/matrix modification and glass fibre hybridization. Composites A. 2005;36:1637–44.CrossRefGoogle Scholar
  20. 20.
    Jain S, Kumar R, Jindal UC. Mechanical behaviour of bamboo and composite. J Mater Sci. 1992;27:4598–604.CrossRefGoogle Scholar
  21. 21.
    Aziz SH, Ansell MP. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1 - polyester resin matrix. Compos Sci Technol. 2004;64:1219–30.CrossRefGoogle Scholar
  22. 22.
    Glassar WG, Razaina R, Jain RK, Kander R. Fibre-reinforced cellulosic thermoplastic composites. J Appl Polym Sci. 1999;73:1329–40.CrossRefGoogle Scholar
  23. 23.
    Bledzki AK, Gassan J. Composite reinforced with cellulose based fibres. Prog Polym Sci. 1999;24:221–74.CrossRefGoogle Scholar
  24. 24.
    Causin V, Marega C, Saini R, Marigo A, Ferrara G. Crystallization behavior of isotactic polypropylene based nanocomposites. J Therm Anal Calorim. 2007;90:849–57.CrossRefGoogle Scholar
  25. 25.
    Moore EP. Polypropylene handbook. Hanser: Cincinnati; 1996.Google Scholar
  26. 26.
    Amash A, Zugenmaier P. Study on cellulose and xylan filled polypropylene composites. Poly Bull. 1998;40:251–8.CrossRefGoogle Scholar
  27. 27.
    Mojumdar SC, Sain M, Prasad RC, Sun L, Venart JES. Selected thermoanalytical methods and their applications from medicine to construction. J Therm Anal Calorim. 2007;90:653–62.CrossRefGoogle Scholar
  28. 28.
    Ehrenstein GW, Riedel G, Trawiel P. Thermal analysis of plastics. Hanser: Cincinnati; 2004.Google Scholar
  29. 29.
    Dean JA. The analytical chemistry handbook. New York: McGraw Hill Inc.; 1995. p. 15.1–5.Google Scholar
  30. 30.
    Pungor E. A practical guide to instrument analysis. Florida: Boca Raton; 1995. p. 181–91.Google Scholar
  31. 31.
    Douglas S, Hollar FJ, Nieman T. Principles of instrumental analysis. 5th ed. McGraw-Hill: New York; 1998. p. 905.Google Scholar
  32. 32.
    Chew S, Sim A. In: 5th IPFA 95, Singapore; 1995. pp. 181–8.Google Scholar
  33. 33.
    Harper D, Wolcott M. Interaction between coupling agent and lubricants in wood-polypropylene composites. Composites A. 2004;35:385–94.CrossRefGoogle Scholar
  34. 34.
    Wang Z, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Cheng SZ, et al. Phase transformation in quenched mesomorphic isotactic polypropylene. Polymer. 2001;42:7561–6.CrossRefGoogle Scholar
  35. 35.
    Qiu W, Zhang F, Endo T, Hirotsu T. Effect of maleated poplypropylene on the performance of polypropylene/cellulose composite. Polym Compos. 2005;26:448–53.CrossRefGoogle Scholar
  36. 36.
    Proniewicz LM, Paluszkiewicz C, Birczńska AW, Majcherezyk H, Barański A, Konieczna A. FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct. 2001;596:163–9.CrossRefGoogle Scholar
  37. 37.
    Mwaikambo LY, Ansell MP. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci. 2002;84:2222–34.CrossRefGoogle Scholar
  38. 38.
    Luo X, Benson RS, Kit KM, Dever M. Kudzu fiber-reinforcement polymer composites. J Appl Polym Sci. 2002;85:1961–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Center for Biocomposites and Biomaterials Processing, Faculty of ForestryUniversity of TorontoTorontoCanada

Personalised recommendations