Skip to main content

Advertisement

Log in

A combined approach of differential scanning calorimetry and hot-stage microscopy with image analysis in the investigation of sulfathiazole polymorphism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A combination of differential scanning calorimetry and hot-stage microscopy with image analysis has been used to investigate the polymorphism of sulfathiazole. The use of light intensity profiles obtained from the HSM images, as an alternative way to present results of the HSM analysis, was found to be useful in describing and verifying thermal events. The approach provides a unique insight into the polymorphic transformations and thermal behaviour exhibited by this compound. The results of the experiments show that sulfathiazole tends to crystallise as mixtures of polymorphs, even though the literature methods for producing pure polymorph were followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Karpinski PH. Polymorphism of active pharmaceutical ingredients. Chem Eng Technol. 2006;29:233–7.

    Article  CAS  Google Scholar 

  2. Hilfiker R, Blatter F, von Raumer M. Relevance of solid-state properties for pharmaceutical products. In: Hilfiker R, editor. Polymorphism in the pharmaceutical industry. Weinheim: Wiley-VCH Verlag GmbH & Co; 2006. p. 1–18.

    Google Scholar 

  3. Kordikowski A, Shekunov T, York P. Polymorph control of sulfathiazole in supercritical CO2. Pharm Res. 2001;18:682–8.

    Article  CAS  Google Scholar 

  4. Pollanen K, Hakkinen AW, Reinikainen SP, Louhi-Kultanen A, Nystrom L. A study on batch cooling crystallization of sulphathiazole – process monitoring using ATR-FTIR and product characterization by automated image analysis. Chem Eng Res Des. 2006;84:47–59.

    Article  CAS  Google Scholar 

  5. Abu Bakar MR, Nagy ZK, Saleemi AN, Rielly CD. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes. Cryst Growth Des. 2009;9:1378–84.

    Article  CAS  Google Scholar 

  6. Woo XY, Nagy ZK, Tan RBH, Braatz RD. Adaptive concentration control of cooling and antisolvent crystallization with laser backscattering measurement. Cryst Growth Des. 2009;9:182–91.

    Article  CAS  Google Scholar 

  7. Nagy ZK, Chew JW, Fujiwara M, Braatz RD. Comparative performance of concentration and temperature controlled batch crystallizations. J Process Control. 2008;18:399–407.

    Article  CAS  Google Scholar 

  8. Craig DQM, Reading M. Thermal analysis of pharmaceuticals. Boca Raton, FL: CRC Press; 2007.

    Google Scholar 

  9. Barnes AF, Hardy MJ, Lever TJ. A review of the applications of thermal methods within the pharmaceutical industry. J Therm Anal. 1993;40:499–509.

    Article  CAS  Google Scholar 

  10. Giron D. Applications of thermal analysis in the pharmaceutical industry. J Pharm Biomed Anal. 1986;4:755–70.

    Article  CAS  Google Scholar 

  11. Giron D. Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates. Thermochim Acta. 1995;248:1–59.

    Article  CAS  Google Scholar 

  12. Giron D. Contribution of thermal methods and related techniques to the rational development of pharmaceuticals – part 1. PSTT. 1998;1:191–9.

    CAS  Google Scholar 

  13. Reading M, Craig DQM. Principles of differential scanning calorimetry. In: Craig DQM, Reading M, editors. Thermal analysis of pharmaceuticals. Boca Raton, FL: CRC Press; 2007. p. 1–20.

    Google Scholar 

  14. Clas S-D, Dalton CR, Hancock BC. Differential scanning calorimetry: applications in drug development. PSTT. 1999;2:311–20.

    CAS  Google Scholar 

  15. Vitez IM, Newman AW, Davidovich M, Kiesnowski C. The evolution of hot-stage microscopy to aid solid-state characterizations of pharmaceutical solids. Thermochim Acta. 1998;324:187–96.

    Article  CAS  Google Scholar 

  16. Marthi K, Ács M, Pokol G, Tomor K, Eröss-Kiss KJ. DSC studies on the polymorphism and pseudopolymorphism of pharmaceutical substances: a complex system for studying physico-chemical behaviour of binary mixtures. J Therm Anal. 1992;38:1017–25.

    Article  CAS  Google Scholar 

  17. Vitez IM, Newman AW. Thermal microscopy. In: Craig DQM, Reading M, editors. Thermal analysis of pharmaceuticals. Boca Raton, FL: CRC Press; 2007. p. 221–64.

    Google Scholar 

  18. Patience DB, Dell’Orco PC, Rawlings JB. Optimal operation of a seeded pharmaceutical crystallization with growth-dependent dispersion. Org Proc Res Dev. 2004;8:609–15.

    Article  CAS  Google Scholar 

  19. Calderon De Anda J, Wang XZ, Roberts KJ. Multi-scale segmentation image analysis for the in-process monitoring of particle shape with batch crystallisers. Chem Eng Sci. 2005;60:1053–65.

    Article  CAS  Google Scholar 

  20. Wang XZ, Roberts KJ, Ma C. Crystal growth measurement using 2D and 3D imaging and the perspectives for shape control. Chem Eng Sci. 2008;63:1173–84.

    Article  CAS  Google Scholar 

  21. Simon LL, Nagy ZK, Hungerbuehler K. Comparison of external bulk video imaging with focused beam reflectance measurement and ultra-violet visible spectroscopy for metastable zone identification in food and pharmaceutical crystallization processes. Chem Eng Sci. 2009;64:3344–51.

    Article  CAS  Google Scholar 

  22. Simon LL, Nagy ZK, Hungerbuehler K. Endoscopy-based in situ bulk video imaging of batch crystallization processes. Org Proc Res Dev. 2009. doi:10.1021/op900019b.

  23. Giron D. Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals by combined thermoanalytical techniques. J Therm Anal Calorim. 2001;64:37–60.

    Article  CAS  Google Scholar 

  24. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–57.

    Article  CAS  Google Scholar 

  25. Pommerenke K. DSC and thermomicroscopy combined. Am Lab. 2000;32:30–2.

    CAS  Google Scholar 

  26. Richardson MF, Yang Q-C, Novotny-Bregger E, Dunitz JD. Conformational polymorphism of dimethyl 3,6-dichloro-2,5-dihydroxyterephthalate. II. Structural, thermodynamic, kinetic and mechanistic aspects of phase transformations among the three crystal forms. Acta Crystallogr. 1990;B46:653–60.

    CAS  Google Scholar 

  27. Wiedemann HG, Bayer G. Application of simultaneous thermomicroscopy/DSC to the study of phase diagrams. J Therm Anal. 1985;30:1273–81.

    Article  CAS  Google Scholar 

  28. Wiedemann HG, Felder-Casagrande S. Thermomicroscopy. In: Brown ME, editor. Handbook of thermal analysis and calorimetry, vol. 1: Principles and practice. Amsterdam: Elsevier Science B.V.; 1998. p. 473–96.

    Google Scholar 

  29. da Silva RMF, De Medeiros FPM, Nascimento TG, Macedo RO, Neto PJR. Thermal characterization of indinavir sulfate using TG, DSC and DSC-photovisual. J Therm Anal Calorim. 2009;95:965–8.

    Article  Google Scholar 

  30. Apperley DC, Fletton RA, Harris RK, Lancaster RW, Tavener S, Threlfall TL. Sulfathiazole polymorphism studied by magic-angle spinning NMR. J Pharm Sci. 1999;88:1275–80.

    Article  CAS  Google Scholar 

  31. Chan FC, Anwar J, Cernik R, Barnes P, Wilson RM. Ab initio structure determination of sulfathiazole polymorph V from synchrotron X-ray powder diffraction data. J Appl Crystallogr. 1999;32:436–41.

    Article  CAS  Google Scholar 

  32. Hughes DS, Hursthouse MB, Threlfall T, Tavener S. A new polymorph of sulfathiazole. Acta Crystallogr C. 1999;55:1831–3.

    Article  Google Scholar 

  33. Blagden N, Davey RJ, Lieberman HF, Williams L, Payne R, Roberts R, et al. Crystal chemistry and solvent effects in polymorphic systems: sulfathiazole. J Chem Soc, Faraday Trans. 1998;94:1035–44.

    Article  CAS  Google Scholar 

  34. Anwar J, Tarling SE, Barnes P. Polymorphism of sulphathiazole. J Pharm Sci. 1989;78:337–42.

    Article  CAS  Google Scholar 

  35. Lagas M, Lerk CF. The polymorphism of sulphathiazole. Int J Pharm. 1981;8:25–33.

    Article  Google Scholar 

  36. Mesley RJ. The polymorphism of sulfathiazole. J Pharm Pharm. 1971;23:687–94.

    CAS  Google Scholar 

  37. Hughes DS, Hursthouse MB, Lancaster RW, Tavener S, Threlfall T, Turner P. How many polymorphs has sulfathiazole? Proposals for reporting crystallographic data of polymorphs. J Pharm Pharm. 1997;49:20.

    Google Scholar 

  38. Anderson JE, Moore S, Tarczynski F, Walker D. Determination of the onset of crystallization of N1-2-(thiazolyl)sulfanilamide (sulfathiazole) by UV-Vis and calorimetry using an automated reaction platform; subsequent characterization of polymorphic forms using dispersive Raman spectroscopy. Spectrochim Acta A. 2001;57:1793–808.

    Article  CAS  Google Scholar 

  39. Aaltonen J, Rantanen J, Siiria S, Karjalainen M, Jorgensen A, Laitinen N, et al. Polymorph screening using near-infrared spectroscopy. Anal Chem. 2003;75:5267–73.

    Article  CAS  Google Scholar 

  40. Hakkinen A, Pollanen K, Karjalainen M, Rantanen J, Louhi-Kultanen M, Nystrom L. Batch cooling crystallization and pressure filtration of sulphathiazole: the influence of solvent composition. Biotechnol Appl Biochem. 2005;41:17–28.

    Article  Google Scholar 

  41. Khoshkhoo S, Anwar J. Crystallization of polymorphs: the effect of solvent. J Phys D. 1993;26:B90–3.

    Article  CAS  Google Scholar 

  42. Gelbrich T, Hughes DS, Hursthouse MB, Threlfall TL. Packing similarity in polymorphs of sulfathiazole. Cryst Eng Comm. 2008;10:1328–34.

    CAS  Google Scholar 

  43. Lever T. Optimizing DSC experiments. In: Craig DQM, Reading M, editors. Thermal analysis of pharmaceuticals. Boca Raton, FL: CRC Press; 2007. p. 24–51.

    Google Scholar 

  44. Urakami K, Shono Y, Higashi A, Umemoto K, Godo M. Estimation of transition temperature of pharmaceutical polymorphs by measuring heat of solution and solubility. Bull Chem Soc Jpn. 2002;75:1241–5.

    Article  CAS  Google Scholar 

  45. Miller RP, Sommer G. A hot stage microscope incorporating a differential thermal analysis unit. J Sci Instrum. 1966;43:293–7.

    Article  CAS  Google Scholar 

  46. Howard KS, Nagy ZK, Saha B, Robertson AL, Steele G. Combined PAT-solid state analytical approach for the detection and study of sodium benzoate hydrate. Org Proc Res Dev. 2009;13:590–7.

    Article  CAS  Google Scholar 

  47. Warrington SB. Simultaneous thermal analysis techniques. In: Haines PJ, editor. Principles of thermal analysis and calorimetry. Cambridge: The Royal Society of Chemistry; 2002. p. 166–89.

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. David Ross of the Department of Materials, Loughborough University for the use of the HSM system. Financial support provided by the Engineering and Physical Sciences Research Council (EPSRC), U.K., (grant EP/E022294/1) is gratefully acknowledged. One of the authors (MRAB) is grateful to the Malaysian Ministry of Higher Education and the International Islamic University Malaysia for a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Kalman Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu Bakar, M.R., Nagy, Z.K. & Rielly, C.D. A combined approach of differential scanning calorimetry and hot-stage microscopy with image analysis in the investigation of sulfathiazole polymorphism. J Therm Anal Calorim 99, 609–619 (2010). https://doi.org/10.1007/s10973-009-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0001-z

Keywords

Navigation