Skip to main content
Log in

Optimal synthesis of heat exchanger network for thermochemical S-I cycle

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, a brief survey of hydrogen production methods is presented with a focus on S-I cycle. Based on heat duty data of sulfuric acid decomposition in S-I cycle, optimization models are developed to explore the minimum utility consumption and the minimum number of heat exchangers. Finally an optimal heat exchanger network for S-I thermochemical cycle is defined by a mixed integer optimization model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Energy Supply and Demand, Statistics Canada, Table 128-0009, Catalogue No: 57-003-x, 2007.

  2. K. Tsunokawa and C. Hoban, Roads and Environment, A Handbook, The World Bank, Washington, D. G., 1997, p. 90.

    Book  Google Scholar 

  3. Inventory of U. S. Greenhouse Gas Emission and Sinks: 1990–2006 (EPA 430-R-08-005), U. S. Environmental Protection Agency, Washington, D.C., 2008, p. ES–15.

  4. Fuel Cell Vehicle World Survey 2003, Breakthrough Technologies Institute, Washington, D.C., 2004, pp. 55, 57, 82.

  5. A. Tugnoli, G. Landucci and V. Cozzani, Int. J. Hydrogen Energy, 33 (2008) 4352.

    Google Scholar 

  6. Y. Z. Chen, Y. Z. Wang, H. Y. Xu and G. X. Xiong, Appl. Catal. B: Env., 80 (2008) 283.

    Article  CAS  Google Scholar 

  7. J. Ivy, Summary of Electrolytic Hydrogen Production, Milestone Completion Report National Renewable Energy Laboratory, U.S. Department of Commence, Springfield VA, 2004, p. 8.

    Google Scholar 

  8. EN19 Efficiency of conventional thermal electricity production, European Environment Agency, 2007, p. 3.

  9. J. S. Herring, J. E. O’Brien, C. M. Stoots, G. L. Hawkes, J. J. Hartvigsen and M. Shahnam, Int. J. Hydrogen Energy, 32 (2007) 441.

    Google Scholar 

  10. C. W. Forsberg, Int. J. Hydrogen Energy, 28 (2003) 1075.

    Google Scholar 

  11. S. Kasahara, S. Kubo, R. Hino, K. Onuki, M. Nomura and S. Nakao, Int. J. Hydrogen Energy, 32 (2007) 489.

    Article  CAS  Google Scholar 

  12. B. Yidiz and M. S. Kazimi, Int. J. Hydrogen Energy, 31 (2006) 83.

    Google Scholar 

  13. P. M. Mathias, General Atomics and Sandia National Laboratories Modeling the Sulfur-Iodine, Aspen Plus Building Blocks and Simulation Models, AspenTech, Rev. 2, 2002, p. 4.

  14. K. Schultz, Thermochemical Production of Hydrogen from Solar and Nuclear Energy, General Atomics, San Diego, 2003, pp. 7, 30.

    Google Scholar 

  15. B. Belaissaoui, R. Thery, X. M. Meyer, M. Meyer, V. Gerbaud and X. Joulia, Chem. Eng. Process., 47 (2008) 397.

    Google Scholar 

  16. L. C. Brown, G. E. Besenbruch, R. D. Lentsh, K. R. Schultz, J. F. Funk, P. S. Pickard, A. C. Marshall, S. K. Showalter, High Efficiency Generation of Hydrogen Fuels Using Nuclear Power, General Atomics, 2003, pp. iii, 3–7, 3–13, 3-, 3–16.

  17. R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis Synthesis and Design of Chemical Processes, Second Edition, Prentice Hall PTR, New Jersey, 2007, pp. 464–477.

    Google Scholar 

  18. L. T. Biegler, I. E. Grossmann and A. W. Westerberg, Systematic Methods of Chemical Process Design, Prentice Hall PTR, New Jersey, 1997, pp. 527–566.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elkamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Kantor, I., Elkamel, A. et al. Optimal synthesis of heat exchanger network for thermochemical S-I cycle. J Therm Anal Calorim 96, 27–33 (2009). https://doi.org/10.1007/s10973-008-9834-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9834-0

Keywords

Navigation