Skip to main content
Log in

Theoretical approach to thermal decomposition process of chosen anhydrous oxalates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The results of theoretical analysis of the properties of crystal structure and bonding in relation to thermal decomposition process in chosen anhydrous metal oxalates (Cd, Co, Zn) are presented. The methods used in this analysis — the Bader’s quantum theory of atoms in molecules and bond order model (as defined by Cioslowski and Mixon), applied to topological properties of the electron density, obtained from DFT calculations performed by Wien2k package (full potential linearized augmented plane wave method), as well as Brown’s bond valence model (bonds valences and strengths, and bond and crystal strains, calculated from crystal structure and bonds lengths data) are described.

Presented results allow us to state, that these methods, when used simultaneously, make possible the description and analysis of the crystal structure and bonding properties and give us the additional insight into its behavior during thermal decomposition process. The proposed theoretical approach can be considered as promising and reliable tool for theoretical analysis, allowing explanation and prediction of the properties of the structure and bonding and hence the most probable way of thermal decomposition process to take place in such structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Kondrashev, V. S. Bogdanov, S. N. Golubev and G. F. Pron, Zh. Struct. Khim., 26 (1985) 90.

    CAS  Google Scholar 

  2. E. Jeanneau, N. Audebrand and D. Louer, Acta Cryst., C57 (2001) 1012.

    CAS  Google Scholar 

  3. B. Małecka, E. Drożdż-Cieśla and A. Małecki, Thermochim. Acta, 423 (2004) 13.

    Article  Google Scholar 

  4. M. E. Brown, D. Dollimore and A. K. Galwey, Comprehensive Chemical Kinetics, Vol. 22. Reactions In Solid State, C. H. Bamford and C. F. H. Tipper, Eds, Amsterdam, Elsevier 1980.

    Google Scholar 

  5. V. V. Boldyrev, I. S. Nevyantsev, Y. I. Mikhailov and E. F. Khayretdinov, Kinet. Katal., 11 (1970) 367.

    CAS  Google Scholar 

  6. H. J. Borchardt and F. Daniels, J. Am. Chem. Soc., 79 (1957) 41.

    Article  CAS  Google Scholar 

  7. D. Dollimore, Thermochim. Acta, 117 (1987) 331.

    Article  CAS  Google Scholar 

  8. B. S. Randhawa and M. Kaur, J. Therm. Anal. Cal., 89 (2007) 251.

    Article  CAS  Google Scholar 

  9. A. K. Galwey and M. E. Brown, J. Therm. Anal. Cal., 90 (2007) 9.

    Article  CAS  Google Scholar 

  10. J. Fujita, K. Nakamoto and M. Kobayashi, J. Phys. Chem., 61 (1957) 1014.

    Article  CAS  Google Scholar 

  11. S. Rane, H. Uskaikar, R. Pednekar and R. Mhalsikar, J. Therm. Anal. Cal., 90 (2007) 627.

    Article  CAS  Google Scholar 

  12. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford 1990.

    Google Scholar 

  13. L. Pauling, J. Am. Chem. Soc., 51 (1929) 1010.

    Article  CAS  Google Scholar 

  14. I. D. Brown, The Chemical Bond in Inorganic Chemistry. The Bond Valence Model, Oxford University Press, 2002.

  15. A. Koleżyński and A. Małecki, J. Therm. Anal. Cal., 96 (2009) 161.

    Article  Google Scholar 

  16. A. Koleżyński and A. Małecki, J. Therm. Anal. Cal., 96 (2009) 167.

    Article  Google Scholar 

  17. A. Koleżyński and A. Małecki, J. Therm. Anal. Cal., DOI: 10.1007/s10973-008-9494-0.

  18. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), ISBN 3-9501031-1-2, (2001).

  19. J. C. Slater, Phys. Rev., 51 (1937) 151.

    Article  Google Scholar 

  20. T. L. Loucks, Augmented Plane Wave Method, Benjamin, New York 1967.

    Google Scholar 

  21. O. K. Andersen, Solid State Commun., 13 (1973) 133.

    Article  Google Scholar 

  22. D. R. Hamann, Phys. Rev. Lett., 42 (1979) 662.

    Article  CAS  Google Scholar 

  23. E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev., B24 (1981) 864.

    Google Scholar 

  24. D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method, Kluwer Academic Publishers, Dordrecht 1994.

    Google Scholar 

  25. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77 (1996) 3865.

    Article  CAS  Google Scholar 

  26. A. Koleżyński, E. Cieśla-Drożdż and B. Handke, sent to Acta Cryst. C.

  27. J. Cioslowski and S. T. Mixon, J. Am. Chem. Soc., 113 (1991) 4142.

    Article  CAS  Google Scholar 

  28. S. T. Howard and O. Lamarche, J. Phys. Org. Chem., 16 (2003) 133.

    Article  CAS  Google Scholar 

  29. J. L. Jules and J. R. Lombardi, J. Mol. Struct. (Teochem), 664–665 (2003) 255.

    Article  Google Scholar 

  30. R. F. W. Bader, T. S. Slee, D. Cremer and E. Kraka, J. Am. Chem. Soc., 105 (1983) 5061.

    Article  CAS  Google Scholar 

  31. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York 1960.

    Google Scholar 

  32. A. Byström and K. A.Wilhelmi, Acta Chem. Scand., 5 (1951) 1003.

    Article  Google Scholar 

  33. W. H. Zachariasen, Acta Cryst., 7 (1954) 795.

    Article  CAS  Google Scholar 

  34. J. V. Smith, Am. Mineral., 38 (1953) 643.

    CAS  Google Scholar 

  35. G. Donnay and R. Allmann, Am. Mineral., 55 (1970) 1003.

    CAS  Google Scholar 

  36. R. Allmann, Monatsh. Chem., 106 (1975) 779.

    Article  CAS  Google Scholar 

  37. W. H. Zachariasen, J. Less-Common Met., 62 (1978) 1.

    Article  CAS  Google Scholar 

  38. V. S. Urusov and I. P. Orlov, Crystall. Rep., 44 (1999) 686.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Małecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koleżyński, A., Małecki, A. Theoretical approach to thermal decomposition process of chosen anhydrous oxalates. J Therm Anal Calorim 97, 77–83 (2009). https://doi.org/10.1007/s10973-008-9718-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9718-3

Keywords

Navigation