Skip to main content
Log in

A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Investigations of nitrogen content and thermal decomposition activation energy (E a) of two different kinds of nitrocellulose (NC) products, NMNC and MNC from the non-fat and original processes of linters, respectively, were discussed. In this study, differential scanning calorimetry (DSC) and element analyzer (EA) are used, for the above two chemicals, along with the same nitration condition in use of sulfuric acid (H2SO4) and nitric acid (HNO3) mixing acid. E a was calculated by our induced model. According to our experimental results, the nitrogen content of NMNC/MNC was 11.71 and 11.55 mass%, in a low nitrogen content condition of mixing acid. The E a parameters were 319.91 (NMNC) and 347.27 (MNC) kJ mol−1, individually. They indicated that the non-fat process of a linter made a higher degree of stability than the others. This research also presents an efficient and accurate model of the thermal decomposition property evaluation for non-fat process of linters. The outcome is believed to be very useful for helping to understand, and be applied as, an inherently safer design during relevant NC manufacturing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Moore, Macromolecular Syntheses Coll., Wiley Ltd., New York, USA, 1977, Vol. 1, pp. 363–366.

    Google Scholar 

  2. Domestic Arsenal 203, Theory and Application of Propellants, Domestic Arsenal 203, Chinese Army, Taiwan, ROC, 1986, p. 92.

  3. H. Feuer, Nitro Compounds Recent Advances in Synthesis and Chemistry, VCH Inc., New York, 1990, p. 267.

    Google Scholar 

  4. N. Regnier, Polym. Degrad. Stab., 55 (1997) 165.

    Article  CAS  Google Scholar 

  5. T. C. Chang, Polym. Degrad. Stab., 62 (1997) 299.

    Article  CAS  Google Scholar 

  6. T. C. Chang, Polym. Degrad. Stab., 63 (1999) 103.

    Article  CAS  Google Scholar 

  7. Brill, T. B., Propell. Explos. Pyrot., 22 (1997) 38.

    Article  CAS  Google Scholar 

  8. K. M. Lou, Thermochim. Acta, 255 (1995) 241.

    Article  Google Scholar 

  9. S. J. Chu, Thermal Analysis of Explosives (in Chinese), Science Press, Beijing, PRC, 1994, Vol. 12, pp. 123–220.

    Google Scholar 

  10. T. H. Lin, Master Thesis, The study of nitrocellulose: manufacturing procedure and thermal degradation, Chung Cheng Institute of Technology (CCIT), Taoyuan, Taiwan, ROC, 1999.

    Google Scholar 

  11. W. Zheng and J. Wang, Propell. Explos. Pyrot., 32 (2007) 520.

    Article  CAS  Google Scholar 

  12. D. S. Foster, Encyclopedia of Industrial Chemical Analysis, Wiley, New York, USA, 1974, Vol. 9, pp. 27–58, pp. 62–68 and pp. 117–158

    Google Scholar 

  13. Domestic Arsenal 203, Test and Analysis of Explosives, Domestic Arsenal 203, Chinese Army, ROC, 1986, p. 79.

  14. C. T. Yu, Crude Cellulose Fiber, Super Science Ltd. Press, Taiwan, ROC, 1994, p. 44.

    Google Scholar 

  15. T. W. Yu, Pharmaceutical Chemistry, Chin Wen Book Press, Hong Kong, PRC, 1970, p. 1044.

    Google Scholar 

  16. L. B. Clapp, The Chemistry of the OH Group, Prentice Hall, Englewood-Cliffs, NJ, USA, 1967, p. 26.

    Google Scholar 

  17. M.V. Kök, J. Therm. Anal. Cal., 88 (2007) 663.

    Article  Google Scholar 

  18. A. Biedunkiewicz, N. Gordon, J. Straszko and S. Tamir, J. Therm. Anal. Cal., 88 (2007) 717.

    Article  CAS  Google Scholar 

  19. Z. Yermiyahu, I. Lapides and S. Yariv, J. Therm. Anal. Cal., 88 (2007) 795.

    Article  CAS  Google Scholar 

  20. S. Y. Jung and H. Yoshida, J. Therm. Anal. Cal., 89 (2007) 681.

    Article  CAS  Google Scholar 

  21. B. Berton, V. Dupray, H. Atmani and G. Coquerel, J. Therm. Anal. Cal., 90 (2007) 325.

    Article  CAS  Google Scholar 

  22. P. Šulcová and M. Trojan, J. Therm. Anal. Cal., 91 (2008) 151.

    Article  Google Scholar 

  23. Y. N. Qi, F. Xu, H. J. Ma, L. X. Sun, J. Zhang and T. Jiang, J. Therm. Anal. Cal., 91 (2008) 219.

    Article  CAS  Google Scholar 

  24. M. V. Kök and W. Smykatz-Kloss, J. Therm. Anal. Cal., 91 (2008) 565.

    Article  Google Scholar 

  25. N. Sh. Lebedeva, W. Zielenkiewicz, E. Utzig, Y. A. Gubarev, V. P. Andreev and Ya. P. Nizhnik, J. Therm. Anal. Cal., 91 (2008) 601.

    Article  CAS  Google Scholar 

  26. Y. M. Chang, K. H. Hu, J. K. Chen and C. M. Shu, J. Therm. Anal. Cal., 83 (2006) 107.

    Article  CAS  Google Scholar 

  27. R. L. Yun, Y. M. Chang, C. H. Lin, K. H. Hu and C. M. Shu, J. Therm. Anal. Cal., 85 (2006) 107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -M. Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C.P., Shu, C.M. A comparison of thermal decomposition energy and nitrogen content of nitrocellulose in non-fat process of linters by DSC and EA. J Therm Anal Calorim 95, 547–552 (2009). https://doi.org/10.1007/s10973-008-9463-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9463-7

Keywords

Navigation