Skip to main content
Log in

Approximation of the emf of a thermocouple

Part I. The polynomials of temperature and Runge’s phenomenon

  • Regular Papers
  • Theory
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Approximation polynomial of temperature for the emf of a thermocouple is of high order, with low accuracy and many digits in the polynomial coefficients. These disadvantages are shown clearly in comparison with the approximation of high-temperature heat capacity. The fitting problems result from the fundamental reason, namely, the particular analytical expression for the emf as the function of temperature.

In the approximation theory, this disadvantage is known as Runge’s phenomenon. In this report, it is shown to be typical of the functions with a negative power of the variable, where the derivation produces a factorial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Blatt, Physics of Electronic Conduction in Solids, (McGraw-Hill Book Company, New York 1968.

    Google Scholar 

  2. V. A. Drebushchak, J. Therm. Anal. Cal., 90 (2007) 289.

    Article  CAS  Google Scholar 

  3. S. Adamovsky and C. Schick, Thermochim. Acta, 415 (2004) 1.

    Article  CAS  Google Scholar 

  4. S. A. Adamovsky (Private communication).

  5. C. Runge, Z. Math. Physik, 46 (1901) 224.

    Google Scholar 

  6. GOST 3044-84, Thermocouples, Gosstandart SSSR, Moscow 1989, p. 79.

  7. P. Debye, Ann. Physik, 39 (1912) 789.

    Article  CAS  Google Scholar 

  8. V. A. Drebushchak, Y. A. Kovalevskaya, I. E. Paukov and E. V. Boldyreva, J. Therm. Anal. Cal., 89 (2007) 649.

    Article  CAS  Google Scholar 

  9. E. S. R. Gopal, Specific Heats at Low Temperatures, Heywood Books, London 1966.

    Google Scholar 

  10. C. G. Maier and K. K. Kelley, J. Am. Chem. Soc., 54 (1932) 3243.

    Article  CAS  Google Scholar 

  11. G. Gospodinov and L. Atanasova, J. Therm. Anal. Cal., 87 (2007) 557.

    Article  CAS  Google Scholar 

  12. I. Zieborak-Tomaszkiewicz, E. Utzig and P. Gierycz, J. Therm. Anal. Cal., 91 (2008) 329.

    Article  CAS  Google Scholar 

  13. R. K. Kremer, M. Cardona, E. Schmitt et al., Phys. Rev., B 72 (2005) 075209.

    Google Scholar 

  14. I. Danaila, P. Joly, S. M. Kaber and M. Postel, An Introduction to Scientific Computing, Springer, New York 2007, p. 49.

    Book  Google Scholar 

  15. A. Jorba and J. C. Tatjer, J. Approx. Theory, 120 (2003) 85.

    Article  Google Scholar 

  16. A. Quarteroni and F. Saleri, Scientific Computing with MATLAB and Octave, Springer, Berlin 2006, p. 71.

    Book  Google Scholar 

  17. B. Fornberg and J. Zuev, Comput. Math. Appl., 54 (2007) 379.

    Article  Google Scholar 

  18. A. Yazici, I. Altas and T. Ergenc, Symbolic Computational Science — ICCS 2004, Springer, Berlin 2004, p. 364.

    Google Scholar 

  19. F. F. Epperson, Am. Math. Mon., 94 (1987) 329.

    Article  Google Scholar 

  20. J. P. Boyd and J. R. Ong, Commun. Comput. Phys., (2008) (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Drebushchak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drebushchak, V.A. Approximation of the emf of a thermocouple. J Therm Anal Calorim 96, 315–320 (2009). https://doi.org/10.1007/s10973-008-9390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9390-7

Keywords

Navigation