Skip to main content
Log in

Effect of sucrose on BSA denatured aggregation at high concentration studied by the iso-conversional method and the master plots method

  • Regular Papers
  • Bio/Life Sciences/Food
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of protein thermal transition is of a significant interest from the standpoint of medical treatment. The effect of sucrose (0–15 mass%) on bovine serum albumin denatured aggregation kinetics at high concentration was studied by the iso-conversional method and the master plots method using differential scanning calorimetry. The observed aggregation was irreversible and conformed to the simple order reaction. The denaturation temperature (T m), the kinetic triplets all increased as the sucrose concentration increased, which indicated the remarkable stabilization effect of sucrose. The study purpose is to provide new opportunities in exploring aggregation kinetics mechanisms in the presence of additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. S. Vyazovkin, L. Vincent and N. Sbirrazzuoli, Macromol. Biosci., 7 (2007) 1181.

    Article  CAS  Google Scholar 

  2. M. R. Rodrírguez Niño, P. J. Wilde, D. C. Clark, F. A. Husband and J. M. Rodrírguez Patino, J. Agric. Food Chem., 45 (1997) 3016.

    Article  Google Scholar 

  3. M. R. Rodrírguez Niño, P. J. Wilde, D. C. Clark and J. M. Rodrírguez Patino, Langmuir, 14 (1998) 2160.

    Article  Google Scholar 

  4. E. M. Dumay, M. T. Kalichevsky and J. C. Cheftel, J. Agric. Food Chem., 42 (1994) 1861.

    Article  CAS  Google Scholar 

  5. J. I. Boye, I. Alli and A. A. Ismail, J. Agric. Food Chem., 44 (1996) 996.

    Article  CAS  Google Scholar 

  6. K. D. Jou and W. J. Harper, Milchwissenschaft, 51 (1996) 509.

    CAS  Google Scholar 

  7. J. F. Back, D. Oakenfull and M. B. Smith, Biochemistry, 18 (1979) 5191.

    Article  CAS  Google Scholar 

  8. A. Hédoux, F. Affouard, M. Descamps, Y. Guinet and L. Paccou, J. Phys.: Condens. Matter, 19 (2007) 205142.

    Article  CAS  Google Scholar 

  9. R. F. Epand, R. M. Epand and C. Y. Jung, Biochemistry, 38 (1999) 454.

    Article  CAS  Google Scholar 

  10. S. K. Baier, E. A. Decker and D. J. McClements, Food Hydrocolloids, 18 (2004) 91.

    Article  CAS  Google Scholar 

  11. S. K. Baier and D. J. McClements, Food Res. Int., 36 (2003) 1081.

    Article  CAS  Google Scholar 

  12. S. K. Baier and D. J. McClements, Int. J. Food Sci. Technol., 41 (2006) 189.

    Article  CAS  Google Scholar 

  13. Y. S. Kim, L. S. Jones, A. Dong, B. S. Kendrick, B. S. Chang, M. C. Manning, T. W. Randolph and J. F. Carpenter, Protein Sci., 12 (2003) 1252.

    Article  CAS  Google Scholar 

  14. S. B. Petersen, V. Jonson, P. Fojan, R. Wimmer and S. Pedersen, J. Biotechnol., 114 (2004) 269.

    Article  CAS  Google Scholar 

  15. A. Hédoux, J. F. Willart, R. Ionov, F. Affouard, Y. Guinet, L. Paccou, A. Lerbret and M. Descamps, J. Phys. Chem. B, 110 (2006) 22886.

    Article  CAS  Google Scholar 

  16. S. Gopal and J. C. Ahluwalia, Biophys. Chem., 54 (1995) 119.

    Article  CAS  Google Scholar 

  17. E. L. Kovrigin and S. A. Potekhin, Biophys. Chem., 83 (2000) 45.

    Article  CAS  Google Scholar 

  18. A. Michnik, J. Therm. Anal. Cal., 87 (2007) 91.

    Article  CAS  Google Scholar 

  19. A. Michnik and Z. Drzazga, J. Therm. Anal. Cal., 88 (2007) 449.

    Article  CAS  Google Scholar 

  20. A. A. Saboury, H. Ghourchaei, M. H. Sanati, M. S. Atri, M. Rezaei-Tawirani and G. H. Hakimelahi, J. Therm. Anal. Cal., 89 (2007) 921.

    Article  CAS  Google Scholar 

  21. M. Joly, A Physico-Chemical Approach to the Denaturation of Proteins, 1965, Academic London.

  22. J. L. Cleland, M. F. Powell and J. S. Shire, Crit. Rev. Ther. Drug Carrier Syst., 10 (1993) 307.

    CAS  Google Scholar 

  23. M. Goedert, R. Jakes, M. G. Spillantini, M. Hasegawa, M. J. Smith and R. A. Crowther, Nature, 383 (1996) 550.

    Article  CAS  Google Scholar 

  24. J. X. Guo, N. Harn, A. Robbins, R. Dougherty and C. R. Middaugh, Biochemistry, 45 (2006) 8686.

    Article  CAS  Google Scholar 

  25. J. M. Sánchez-Ruíz, J. L. López-Lacomba, M. Cortijo and P. L. Mateo, Biochemistry, 27 (1988) 1648.

    Article  Google Scholar 

  26. S. Vyazovkin and C. A. Wight, J. Phys. Chem. A., 101 (1997) 8279.

    Article  CAS  Google Scholar 

  27. S. Vyazovkin and C. A. Wight, Thermochim. Acta, 340/341 (1999) 53.

    Article  Google Scholar 

  28. S. Vyazovkin, Intl. J. Chem. Kinetics., 27 (1995) 73.

    Article  CAS  Google Scholar 

  29. S. Vyazovkin, Intl. J. Chem. Kinetics, 28 (1996) 95.

    Article  CAS  Google Scholar 

  30. G. Barone and C. Giancola and A. Verdoliva, Thermochim. Acta, 199 (1992) 197.

    Article  CAS  Google Scholar 

  31. S. W. Raso, J. Abel, J. M. Barnes, K. M. Maloney, G. Pipes, M. J. Treuheit, J. King and D. N. Brems, Protein Sci., 14 (2005) 2246.

    Article  CAS  Google Scholar 

  32. A. M. Jennifer and R. J. Christopher, J. Phys. Chem. B, 111 (2007) 7897.

    Article  CAS  Google Scholar 

  33. C. J. Roberts, J. Phys. Chem. B, 107 (2003) 1194.

    Article  CAS  Google Scholar 

  34. V. Militello, C. Casarino, A. Emanuele, A. Giostra, F. Pullara and M. Leone, Biophys. Chem., 107 (2004) 175.

    Article  CAS  Google Scholar 

  35. V. Militello, V. Vetri and M. Leone, Biophys. Chem., 105 (2003) 133.

    Article  CAS  Google Scholar 

  36. X. M. Cao, X. Yang, J. Y. Shi, Y. W. Liu and C. X. Wang, J. Therm. Anal. Cal., 93 (2008) 451.

    Article  CAS  Google Scholar 

  37. W. J. Tang, Y. W. Liu, H. Zhang and C. X. Wang, Thermochim. Acta, 408 (2003) 39.

    Article  CAS  Google Scholar 

  38. W. J. Tang, Y. W. Liu, H. Zhang, Z. Y. Wang and C. X. Wang, J. Therm. Anal. Cal., 74 (2003) 309.

    Article  Google Scholar 

  39. T. Hatakeyama and F. X. Quinn, Thermal Analysis Fundamentals and Applications to Polymer Science, Second Edition, Wiley, England 1999.

    Google Scholar 

  40. Mettler Toledo, Software option of STARe Software, DSC Evaluations 13 convertion determination 13-403 Mettler-Toledo GmbH 1993-2002 ME-709319G Printed in Switzerland, 0209/31. 12

  41. A. M. Klibanov, T. J. Ahern, D. L. Oxender and C. F. Fox, Eds, Thermal stability of proteins, In Protein Engineering, A. R. Liss, New York 1987, pp. 213–218.

    Google Scholar 

  42. M. A. M. Hoffmann, S. P. F. M. Roefs, M. Verheul, P. J. J. M. v. Mil and K. G. d. Kruif, J. Dairy Res., 63 (1996) 423.

    Article  Google Scholar 

  43. A. C. Alting, R. J. Hamer, C. G. de Kruif and R. W. Visschers, J. Agric. Food Chem., 48 (2000) 5001.

    Article  CAS  Google Scholar 

  44. S. Jain and J. C. Ahluwalia, Thermochim. Acta, 302 (1997) 17.

    Article  CAS  Google Scholar 

  45. T. E. Creighton, Proteins, Second Edition, Freeman, New York 1993.

    Google Scholar 

  46. V. A. Parsegian, R. P. Rand and D. C. Rau, Methods Enzymol., 259 (1995) 43.

    Article  CAS  Google Scholar 

  47. R. Jaenicke, Prog. Biophys. Mol. Biol., 49 (1987) 117.

    Article  CAS  Google Scholar 

  48. M. Weijers, P. A. Barneveld, M. A. Cohen Stuart and R. W. Visschers, Protein Sci., 12 (2003) 2693.

    Article  CAS  Google Scholar 

  49. A. E. Lyubarev and B. I. Kurganov, J. Therm. Anal. Cal., 62 (2000) 51.

    Article  CAS  Google Scholar 

  50. C. Le Bon, T. Nicolai and D. Durand, Macromolecules, 32 (1999) 6120.

    Article  CAS  Google Scholar 

  51. L. A. Perez-Maqueda, J. M. Criado, F. J. Goto and J. Malek, J. Phys. Chem. A, 106 (2002) 2862.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Wang, Z., Yang, X. et al. Effect of sucrose on BSA denatured aggregation at high concentration studied by the iso-conversional method and the master plots method. J Therm Anal Calorim 95, 969–976 (2009). https://doi.org/10.1007/s10973-008-9307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9307-5

Keywords

Navigation