Skip to main content
Log in

Preferential solvation of lysozyme by dimethyl sulfoxide in binary solutions of water and dimethyl sulfoxide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To reveal the denaturation mechanism of lysozyme by dimethyl sulfoxide (DMSO), thermal stability of lysozyme and its preferential solvation by DMSO in binary solutions of water and DMSO was studied by differential scanning calorimetry (DSC) and using densities of ternary solutions of water (1), DMSO (2) and lysozyme (3) at 298.15 K. A significant endothermic peak was observed in binary solutions of water and DMSO except for a solution with a mole fraction of DMSO (x 2) of 0.4. As x 2 was increased, the thermal denaturation temperature T m decreased, but significant increases in changes in enthalpy and heat capacity for denaturation, ΔH cal and ΔC p, were observed at low x 2 before decreasing. The obtained amount of preferential solvation of lysozyme by DMSO (∂g 2/∂g 3) was about 0.09 g g−1 at low x 2, indicating that DMSO molecules preferentially solvate lysozyme at low x 2. In solutions with high x 2, the amount of preferential solvation (∂g 2/∂g 3) decreased to negative values when lysozyme was denatured. These results indicated that DMSO molecules do not interact directly with lysozyme as denaturants such as guanidine hydrochloride and urea do. The DMSO molecules interact indirectly with lysozyme leading to denaturation, probably due to a strong interaction between water and DMSO molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jozwiak, J. Therm. Anal. Cal., 93 (2008) 701.

    Article  CAS  Google Scholar 

  2. B. Marongiu, A. Piras, S. Porcedda and E. Tuveri, J. Therm. Anal. Cal., 90 (2007) 909.

    Article  CAS  Google Scholar 

  3. F. Franks and D. Eagland, CRC Critical Reviews in Biochemistry, 3 (1975) 165.

    Article  CAS  Google Scholar 

  4. H. Uedaira and H. Uedaira, Bull. Chem. Soc. Jpn., 53 (1980) 2451.

    Article  CAS  Google Scholar 

  5. C. F. Lau, P. T. Wilson and D. V. Fenby, Aust. J. Chem., 23 (1970) 1143.

    CAS  Google Scholar 

  6. J. M. G. Cowie and P. M. Toporowski, Can. J. Chem., 39 (1961) 2240.

    Article  CAS  Google Scholar 

  7. R. N. Havemeyer, J. Pharm. Sci., 55 (1966) 851.

    Article  CAS  Google Scholar 

  8. H. K. Schachman and M. A. Lauffer, J. Am. Chem. Soc., 71 (1949) 536.

    Article  CAS  Google Scholar 

  9. E. F. Casassa and H. Eisenberg, Adv. Protein Chem., 19 (1964) 287.

    Article  CAS  Google Scholar 

  10. S. N. Timasheff, J. C. Lee, E. P. Pittz and N. Tweedy, J. Colloid Interface Sci., 55 (1976) 658.

    Article  CAS  Google Scholar 

  11. S. N. Timasheff, Acc. Chem. Res., 3 (1970) 62.

    Article  CAS  Google Scholar 

  12. J. C. Lee and S. N. Timasheff, Biochemistry, 13 (1974) 257.

    Article  CAS  Google Scholar 

  13. V. Prakash, C. Loucheux, S. Scheufele, M. J. Gorbunoff, and S. N. Timasheff, Arc. Biol. Biophys., 210 (1981) 455.

    Article  CAS  Google Scholar 

  14. S. E. Radford, C. M. Dobson and P. A. Evans, Nature, 358 (1992) 302.

    Article  CAS  Google Scholar 

  15. W. Pfeil and P. L. Privalov, Biophys. Chem., 4 (1976) 23.

    Article  CAS  Google Scholar 

  16. A. Zielenkiewicz and W. Zielenkiewicz, J. Therm. Anal. Cal., 90 (2007) 941.

    Article  CAS  Google Scholar 

  17. T. Kamiyama, T. Matsusita and T. Kimura, J. Chem. Eng. Data, 48 (2003) 1301.

    Article  CAS  Google Scholar 

  18. T. Kamiyama, M. Morita and T. Kimura, J. Chem. Eng. Data, 49 (2004) 1350.

    Article  CAS  Google Scholar 

  19. T. Kamiyama, M. Morita and T. Kimura, J. Solution Chem., 37 (2008) 27.

    Article  CAS  Google Scholar 

  20. H. Johannesson, V. P. Denisov and B. Halle, Protein Sci., 6 (1997) 1756.

    Article  CAS  Google Scholar 

  21. S. C. Mande and M. E. Sbhia, Protein Eng., 13 (2000) 133.

    Article  CAS  Google Scholar 

  22. M. S. Lehmann and R. F. D. Stansfield, Biochemistry, 28 (1989) 7028.

    Article  CAS  Google Scholar 

  23. J. M. Sturtevant, Ann. Rev. Phys. Chem., 38 (1987) 463.

    Article  CAS  Google Scholar 

  24. S. Kidokoro, Comprehensive Handbook of Calorimetry and Thermal Analysis, Wiley (2004) p. 200.

  25. K. Gekko and H. Noguchi, J. Phys. Chem., 83 (1979) 2706.

    Article  CAS  Google Scholar 

  26. S. N. Timasheff, Protein-Solvent Interactions, R. B. Gregory, Ed., Marcel Dekker, 1995, p. 445.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kamiyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiyama, T., Liu, H.L. & Kimura, T. Preferential solvation of lysozyme by dimethyl sulfoxide in binary solutions of water and dimethyl sulfoxide. J Therm Anal Calorim 95, 353–359 (2009). https://doi.org/10.1007/s10973-008-9232-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9232-7

Keywords

Navigation