Skip to main content
Log in

Kissinger kinetic analysis of data obtained under different heating schedules

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The dynamic heating rate method developed by TA Instruments (Hi-ResTM) is a kind of sample controlled thermal analysis in which a linear relationship between the logarithm of the heating rate and the rate of mass change is imposed. It is shown in this paper that the reacted fraction at the maximum reaction rate strongly depends on the parameters selected for the Hi-Res heating algorithm, what invalidates the use of the Kissinger method for analysing Hi-Res data unless that the reaction fits a first order kinetic law. Only in this latter case, it has been demonstrated that it is not required that a constant value of the reacted fraction at the maximum reaction rate is fulfilled for determining the activation energy from the Kissinger method. In such a case the Kissinger plot gives the real activation energy, independently of both the heating schedule used and the value of the reacted fraction, αm, at the maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. A. Perez-Maqueda, P. E. Sanchez-Jimenez and J. M. Criado, Current Topics Catal., 6 (2007) 1.

    Google Scholar 

  2. J. Rouquerol and T. O. Sorensen, ’Sample Controlled Thermal Analysis’, T. O. Sorensen and J. Rouquerol, Eds, Kluwer, Dordrecht 2003, p. 1.

    Google Scholar 

  3. J. Rouquerol, J. Therm. Anal. Cal., 72 (2003) 1081.

    Article  CAS  Google Scholar 

  4. J. M. Criado, L. A. Perez-Maqueda, M. J. Dianez and P. E. Sanchez-Jimenez, J. Therm. Anal. Cal., 87 (2007) 297.

    Article  CAS  Google Scholar 

  5. M. J. Dianez, L. A. Perez-Maqueda and J. M. Criado, Rev. Sci. Instrum., 75 (2004) 2620.

    Article  CAS  Google Scholar 

  6. P. A. Barnes, M. J. Tiernan and G. M. B. Parkes, J. Therm. Anal. Cal., 56 (1999) 733.

    Article  CAS  Google Scholar 

  7. S. Bordere, F. Rouquerol, J. Rouquerol, J. Estienne and A. Floreancig, J. Thermal Anal., 36 (1990) 1651.

    Article  CAS  Google Scholar 

  8. F. J. Gotor, L. A. Perez-Maqueda, A. Ortega and J. M. Criado, J. Thermal Anal., 53 (1998) 389.

    Article  CAS  Google Scholar 

  9. L. A. Perez-Maqueda, J. M. Criado and F. I. Gotor, Int. J. Chem. Kinet., 34 (2002) 184.

    Article  CAS  Google Scholar 

  10. L. A. Perez-Maqueda, A. Ortega and J. M. Criado, Thermochim. Acta, 277 (1996) 165.

    Article  CAS  Google Scholar 

  11. M. H. Stacey, Anal. Proc., 22 (1985) 242.

    CAS  Google Scholar 

  12. M. J. Tiernan, P. A. Barnes and G. M. B. Parkes, J. Phys. Chem. B, 103 (1999) 338.

    Article  CAS  Google Scholar 

  13. P. S. Gill, S. R. Sauerbrunn and B. S. Crowe, J. Thermal Anal., 38 (1992) 255.

    Article  CAS  Google Scholar 

  14. S. Sauerbrunn and P. Gill, Am. Lab., 26 (1994) 29.

    CAS  Google Scholar 

  15. H. E. Kissinger, Anal. Chem., 29 (1957) 1702.

    Article  CAS  Google Scholar 

  16. L. Abate, I. Blanco, F. A. Bottino, G. Di Pasquale, E. Fabbri, A. Orestano and A. Pollicino, J. Therm. Anal. Cal., 91 (2008) 681.

    Article  CAS  Google Scholar 

  17. S. M. Ahmed and M. I. Abd-Elrhaman, J. Therm. Anal. Cal., 91 (2008) 195.

    Article  CAS  Google Scholar 

  18. M. V. Borrachero, J. Paya, M. Bonilla and J. Monzo, J. Therm. Anal. Cal., 91 (2008) 503.

    Article  CAS  Google Scholar 

  19. A. d’Almeida, D. W. Barreto, V. Calado and J. R. M. d’Almeida, J. Therm. Anal. Cal., 91 (2008) 405.

    Article  CAS  Google Scholar 

  20. M. D. Fernandez and M. J. Fernandez, J. Therm. Anal. Cal., 91 (2008) 447.

    Article  Google Scholar 

  21. A. Kropidlowska, A. Rotaru, M. Strankowski, B. Becker and E. Segal, J. Therm. Anal. Cal., 91 (2008) 903.

    Article  CAS  Google Scholar 

  22. A. Révész, J. Therm. Anal. Cal., 91 (2008) 879.

    Article  Google Scholar 

  23. J. M. Salla, X. Fernandez-Francos, X. Ramis, C. Mas, A. Mantecon and A. Serra, J. Therm. Anal. Cal., 91 (2008) 385.

    Article  CAS  Google Scholar 

  24. S. Vecchio, L. Campanella, A. Nuccilli and M. Tomassetti, J. Therm. Anal. Cal., 91 (2008) 51.

    Article  CAS  Google Scholar 

  25. J. Zhang, Y. Y. Liu, J. L. Zeng, F. Xu, L. X. Sun, W. S. You and Y. Sawada, J. Therm. Anal. Cal., 91 (2008) 861.

    Article  CAS  Google Scholar 

  26. C. Gamlin, M. G. Markovic, N. K. Dutta, N. R. Choudhury and J. G. Matisons, J. Therm. Anal. Cal., 59 (2000) 319.

    Article  CAS  Google Scholar 

  27. A. J. Gu and G. Z. Liang, J. Appl. Polym. Sci., 89 (2003) 3594.

    Article  CAS  Google Scholar 

  28. B. A. Howell and J. A. Ray, J. Therm. Anal. Cal., 83 (2006) 63.

    Article  CAS  Google Scholar 

  29. X. G. Li and M. R. Huang, J. Appl. Polym. Sci., 71 (1999) 565.

    Article  CAS  Google Scholar 

  30. I. M. Salin and J. C. Seferis, J. Appl. Polym. Sci., 47 (1993) 847.

    Article  CAS  Google Scholar 

  31. J. M. Criado and L. A. Perez-Maqueda, J. Therm. Anal. Cal., 80 (2005) 27.

    Article  CAS  Google Scholar 

  32. J. M. Criado and L. A. Perez Maqueda, ’Sample Controlled Thermal Analysis: Origin, Goals, Multiple Forms, Applications and Future’, O. T. Sorensen and J. Rouquerol, Eds, Kluwer, Dordrecht 2003, p. 55.

    Google Scholar 

  33. J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Stand. (A), 70 (1960) 487.

    Google Scholar 

  34. H. H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.

    Article  CAS  Google Scholar 

  35. G. Gyulay and E. J. Greenhow, Thermochim. Acta, 6 (1973) 254.

    Article  Google Scholar 

  36. J. M. Criado, R. Garciarojas and J. Morales, Thermochim. Acta, 25 (1978) 257.

    Article  CAS  Google Scholar 

  37. J. M. Criado and A. Ortega, J. Non-Cryst. Solids, 87 (1986) 302.

    Article  CAS  Google Scholar 

  38. J. M. Criado and A. Ortega, Thermochim. Acta, 103 (1986) 317.

    Article  CAS  Google Scholar 

  39. J. M. Criado and A. Ortega, Acta Metal., 35 (1987) 1715.

    Article  CAS  Google Scholar 

  40. D. Chen, X. Gao and D. Dollimore, Thermochim. Acta, 215 (1993) 109.

    Article  CAS  Google Scholar 

  41. P. Budrugeac and E. Segal, J. Therm. Anal. Cal., 88 (2007) 703.

    Article  CAS  Google Scholar 

  42. J. Rouquerol, T. O. Sorensen, P. A. Barnes, E. L. Charsley, E. Fesenko and M. Reading, ’Sample Controlled Thermal Analysis’, T. O. Sorensen and J. Rouquerol, Eds, Kluwer Academic Publishers, Dordrecht, Netherlands 2003, p. 16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pérez-Maqueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Jiménez, P.E., Criado, J.M. & Pérez-Maqueda, L.A. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim 94, 427–432 (2008). https://doi.org/10.1007/s10973-008-9200-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9200-2

Keywords

Navigation