Skip to main content
Log in

Thermal decomposition of methylxanthines

Interpretation of the results by PCA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of theophylline, theobromine, caffeine, diprophylline and aminophylline were evaluated by calorimetrical, thermoanalytical and computational methods. Calorimetrical studies have been performed with aid of a heat flux Mettler Toledo DSC system. 10 mg samples were encapsulated in a 40 μL flat-bottomed aluminium pans. Measurements in the temperature range form 20 to 400°C were carried out at a heating rate of 10 and 20°C min−1 under an air stream. It has been established that the values of melting points, heat of transitions and enthalpy for methylxanthines under study varied with the increasing of heating rate.

Thermoanalytical studies have been followed by using of a derivatograph. 50, 100 and 200 mg samples of the studied compounds were heated in a static air atmosphere at a heating rate of 3, 5, 10 and 15°C min−1 up to the final temperature of 800°C. By DTA, TG and DTG methods the influence of heating rate and sample size on thermal destruction of the studied methylxanthines has been determined. For chemometric evaluation of thermoanalytical results the principal component analysis (PCA) was applied. This method revealed that first of all the heating rate influences on the results of thermal decomposition. The most advantageous results can be obtained taking into account sample masses and heating rates located in the central part of the two-dimensional PCA graph. As a result, similar data could be obtained for 100 mg samples heated at 10°C·min−1 and for 200 mg samples heated at 5°C min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Katzung Ed., Basic and Clinical Pharmacology, 9th Ed., McGraw-Hill Companies, New York 2004.

    Google Scholar 

  2. A. Zejc and M. Gorczyca, Eds., Chemistry of Drugs, 2nd Ed., PZWL, Warsaw 2002.

    Google Scholar 

  3. E. Suihko, J. Ketolainen, A. Poso, M. Ahlgren, J. Gynther and P. Paronen, Int. J. Pharm., 158 (1997) 47.

    Article  CAS  Google Scholar 

  4. Y. Yoshihashi, M. Makita, Sh. Yamamura, E. Fukuoka and K. Terada, Chem. Pharm. Bull., 46 (1998) 1148.

    CAS  Google Scholar 

  5. S. P. Duddu, N. G. Das, T. P. Kelly and Th. D. Sokoloski, Int. J. Pharm., 114 (1995) 247.

    Article  CAS  Google Scholar 

  6. A. T. M. Serajuddin, J. Pharm. Pharmacol., 38 (1986) 93.

    CAS  Google Scholar 

  7. J. Pirttimäki and E. Laine, Eur. J. Pharm. Sci., 1 (1994) 203.

    Article  Google Scholar 

  8. H. Bothe and H. K. Cammenga, Thermochim. Acta, 40 (1980) 29.

    Article  CAS  Google Scholar 

  9. U. J. Griesser and A. Burger, Int. J. Pharm., 120 (1995) 83.

    Article  CAS  Google Scholar 

  10. D. Giron, P. Piechon, C. Goldbronn and S. Pfeffer, J. Therm. Anal. Cal., 57 (1999) 61.

    Article  CAS  Google Scholar 

  11. U. J. Griesser and A. Burger, Sci. Pharm., 61 (1993) 133.

    CAS  Google Scholar 

  12. H. Bothe and H. K. Cammenga, J. Thermal Anal., 16 (1979) 267.

    Article  CAS  Google Scholar 

  13. Gh. Danila, L. Profire, G. G. Bumbu and C. Vasile, Thermochim. Acta, 343 (2000) 69.

    Article  CAS  Google Scholar 

  14. L. Profire, G. G. Bumbu, M. Costuleanu, Gh. Danila and C. Vasile, Thermochim. Acta, 381 (2002) 19.

    Article  CAS  Google Scholar 

  15. R. G. Brereton, Chemometrics: Applications of Mathematics and Statistics to Laboratory Systems, Ellis Horwood, New York 1990.

    Google Scholar 

  16. J. W. Einax, H. W. Zwanziger and S. Geiss, Chemometrics in Environmental Analysis, VCH, Weinheim 1997.

    Google Scholar 

  17. P. Konieczyñski and M. Wesolowski, Food Chem., 103 (2007) 210.

    Article  Google Scholar 

  18. M. Wesolowski, B. Suchacz and J. Halkiewicz, Anal. Bioanal. Chem., 384 (2006) 458.

    Article  CAS  Google Scholar 

  19. B. Suchacz and M. Wesolowski, Talanta, 69 (2006) 37.

    Article  CAS  Google Scholar 

  20. M. Wesolowski and J. Erecinska, J. Therm. Anal. Cal., 82 (2005) 307.

    Article  CAS  Google Scholar 

  21. Farmakopea Polska V (5th Polish Pharmacopoeia), Publ. PTFarm, Warsaw 1990.

  22. European Pharmacopoeia 5, Publ. Council of Europe, Strasbourg 2005.

  23. A. K. Galwey, J. Therm. Anal. Cal., 87 (2007) 601.

    Article  CAS  Google Scholar 

  24. L. A. Ramos and E. T. G. Cavalheiro, J. Therm. Anal. Cal., 87 (2007) 831.

    Article  CAS  Google Scholar 

  25. E. Lizarraga, C. Zabaleta and J. A. Palop, J. Therm. Anal. Cal., 89 (2007) 783.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wesolowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesolowski, M., Szynkaruk, P. Thermal decomposition of methylxanthines. J Therm Anal Calorim 93, 739–746 (2008). https://doi.org/10.1007/s10973-008-9138-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9138-4

Keywords

Navigation