Skip to main content
Log in

Thermal decomposition of hydrotalcites with variable cationic ratios

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis complimented with evolved gas mass spectrometry has been applied to hydrotalcites containing carbonate prepared by coprecipitation and with varying divalent/trivalent cation ratios. The resulting materials were characterised by XRD, and TG/DTG to determine the stability of the hydrotalcites synthesised. Hydrotalcites of formula Mg4(Fe,Al)2(OH)12(CO3)·4H2O, Mg6(Fe,Al)2(OH)16(CO3)·5H2O, and Mg8(Fe,Al)2(OH)20(CO3)·8H2O were formed by intercalation with the carbonate anion as a function of the divalent/trivalent cationic ratio.

XRD showed slight variations in the d-spacing between the hydrotalcites. The thermal decomposition of carbonate hydrotalcites consists of two decomposition steps between 300 and 400°C, attributed to the simultaneous dehydroxylation and decarbonation of the hydrotalcite lattice. Water loss ascribed to dehydroxylation occurs in two decomposition steps, where the first step is due to the partial dehydroxylation of the lattice, while the second step is due to the loss of water interacting with the interlayer anions. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides and spinels, including MgO, MgAl2O4, and MgFeAlO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hashi, S. Kikkawa and M. Koizumi, Clays Clay Miner., 31 (1983) 152.

    Article  CAS  Google Scholar 

  2. L. Ingram and H. F. W. Taylor, Mineral. Magazine J. Miner. Soc., (1876–1968) 36 (1967) 465.

    Article  CAS  Google Scholar 

  3. J. T. Kloprogge, L. Hickey and R. L. Frost, Mater. Chem. Phys., 89 (2005) 99.

    Article  CAS  Google Scholar 

  4. R. L. Frost and K. L. Erickson, Spectrochim. Acta, Part A, 61 (2005) 51.

    Article  Google Scholar 

  5. K. L. Erickson, T. E. Bostrom and R. L. Frost, Mater. Lett., 59 (2004) 226.

    Article  Google Scholar 

  6. R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 217.

    Article  CAS  Google Scholar 

  7. R. L. Frost and K. L. Erickson, Thermochim. Acta, 421 (2004) 51.

    Article  CAS  Google Scholar 

  8. J. T. Kloprogge, L. Hickey and R. L. Frost, J. Raman Spectrosc., 35 (2004) 967.

    Article  CAS  Google Scholar 

  9. J. T. Kloprogge, L. Hickey and R. L. Frost, J. Solid State Chem., 177 (2004) 4047.

    Article  CAS  Google Scholar 

  10. R. L. Frost and Z. Ding, Thermochim. Acta, 405 (2003) 207.

    Article  CAS  Google Scholar 

  11. R. L. Frost, W. Martens, Z. Ding and J. T. Kloprogge, J. Therm. Anal. Cal., 71 (2003) 429.

    Article  CAS  Google Scholar 

  12. R. L. Frost, M. L. Weier, M. E. Clissold and P. A. Williams, Spectrochim. Acta, Part A, 59 (2003) 3313.

    Article  Google Scholar 

  13. R. L. Frost, M. L. Weier, M. E. Clissold, P. A. Williams and J. T. Kloprogge, Thermochim. Acta, 407 (2003) 1.

    Article  CAS  Google Scholar 

  14. R. L. Frost, M. L. Weier and J. T. Kloprogge, J. Raman Spectrosc., 34 (2003) 760.

    Article  CAS  Google Scholar 

  15. R. M. Taylor, Clay Miner., 17 (1982) 369.

    Article  CAS  Google Scholar 

  16. H. F. W. Taylor, Miner. Magazine J. Miner. Soc., (1876–1968) 37 (1969) 338.

    Article  CAS  Google Scholar 

  17. H. C. B. Hansen and C. B. Koch, Appl. Clay Sci., 10 (1995) 5.

    Article  CAS  Google Scholar 

  18. D. L. Bish and A. Livingstone, Miner. Magazine, 44 (1981) 339.

    Article  CAS  Google Scholar 

  19. E. H. Nickel and R. M. Clarke, Am. Mineral., 61 (1976) 366.

    CAS  Google Scholar 

  20. E. Horváth, J. Kristóf, R. L. Frost, N. Heider and V. Vágvölgyi, J. Therm. Anal. Cal., 78 (2004) 687.

    Article  Google Scholar 

  21. R. L. Frost, M. L. Weier and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 1025.

    Article  CAS  Google Scholar 

  22. R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 78 (2004) 367.

    Article  CAS  Google Scholar 

  23. E. Horváth, J. Kristóf, R. L. Frost, A. Rédey, V. Vágvölgyi and T. Cseh, J. Therm. Anal. Cal., 71 (2003) 707.

    Article  Google Scholar 

  24. J. Kristóf, R. L. Frost, J. T. Kloprogge, E. Horváth and E. Makó, J. Therm. Anal. Cal., 69 (2002) 77.

    Article  Google Scholar 

  25. F. Rey, V. Fornes and J. M. Rojo, J. Chem. Soc., Faraday Trans., 88 (1992) 2233.

    Article  CAS  Google Scholar 

  26. M. Valcheva-Traykova, N. Davidova and A. Weiss, J. Mater. Sci., 28 (1993) 2157.

    Article  CAS  Google Scholar 

  27. G. Lichti and J. Mulcahy, Chem. Aust., 65 (1998) 10.

    CAS  Google Scholar 

  28. Y. Seida and Y. Nakano, Jpn. J. Chem. Eng., 34 (2001) 906.

    Article  CAS  Google Scholar 

  29. Y. Roh, S. Y. Lee, M. P. Elless and J. E. Foss, Clays Clay Miner., 48 (2000) 266.

    Article  CAS  Google Scholar 

  30. Y. Seida, Y. Nakano and Y. Nakamura, Water Res., 35 (2001) 2341.

    Article  CAS  Google Scholar 

  31. E. L. Crepaldi, P. C. Pavan and J. B. Valim, J. Brazilian Chem. Soc., 11 (2000) 64.

    CAS  Google Scholar 

  32. J. I. Di Cosimo, V. K. Diez, M. Xu, E. Iglesia and C. R. Apesteguia, J. Catal., 178 (1998) 499.

    Article  Google Scholar 

  33. R. L. Frost, A. W. Musumeci, T. Bostrom, M. O. Adebajo, M. L. Weier and W. Martens, Thermochim. Acta, 429 (2005) 179.

    Article  CAS  Google Scholar 

  34. T. Lopez, E. Ramos, P. Bosch, M. Asomoza and R. Gomez, Mater. Lett., 30 (1997) 279.

    Article  CAS  Google Scholar 

  35. F. Malherbe and J.-P. Besse, J. Solid State Chem., 155 (2000) 332.

    Article  CAS  Google Scholar 

  36. S. Miyata, Clays Clay Miner., 28 (1980) 50.

    Article  CAS  Google Scholar 

  37. J. Perez-Ramirez, G. Mul and J. A. Moulijn, Vib. Spectrosc., 27 (2001) 75.

    Article  CAS  Google Scholar 

  38. D. Tichit, M. H. Lhouty, A. Guida, B. H. Chiche, F. Figueras, A. Auroux, D. Bartalini and E. Garrone, J. Catal., 151 (1995) 50.

    Article  CAS  Google Scholar 

  39. J. Bouzaid and R. L. Frost, J. Therm. Anal. Cal., 89 (2007) 133.

    Article  CAS  Google Scholar 

  40. J. M. Bouzaid, R. L. Frost and W. N. Martens, J. Therm. Anal. Cal., 89 (2007) 511.

    Article  CAS  Google Scholar 

  41. R. L. Frost, A. W. Musumeci, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 89 (2007) 95.

    Article  CAS  Google Scholar 

  42. R. L. Frost, J. M. Bouzaid, A. W. Musumeci, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 437.

    Article  CAS  Google Scholar 

  43. J. T. Kloprogge and R. L. Frost, J. Solid State Chem., 146 (1999) 506.

    Article  CAS  Google Scholar 

  44. J. T. Kloprogge, D. Wharton, L. Hickey and R. L. Frost, Am. Mineral., 87 (2002) 623.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, S.J., Spratt, H.J. & Frost, R.L. Thermal decomposition of hydrotalcites with variable cationic ratios. J Therm Anal Calorim 95, 123–129 (2009). https://doi.org/10.1007/s10973-008-8992-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-8992-4

Keywords

Navigation