Skip to main content
Log in

Phase transitions of cassava starch dispersions prepared with glycerol solutions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this work was to study the glass transition, the glass transition of the maximally freeze-concentrated fractions, the ice melting and the gelatinization phenomenon in dispersions of starch prepared using glycerol-water solutions. The starch concentration was maintained constant at 50 g cassava starch/100 g starch dispersions, but the concentration of the glycerol solutions was variable (C g= 20, 40, 60, 80 and 100 mass/mass%). The phase transitions of these dispersions were studied by calorimetric methods, using a conventional differential scanning calorimeter (DSC) and a more sensitive equipment (micro-DSC). Apparently, in the glycerol diluted solutions (20 and 40%), the glycerol molecules interacted strongly with the glucose molecules of starch. While in the more concentrated glycerol domains (C g>40%), the behaviour was controlled by migration of water molecules from the starch granules, due to a hypertonic character of glycerol, which affected all phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tan, C. C. Weebe, P. A. Sopade and P. J. Halley, Starch/Stärke, 56 (2004) 6.

    Article  CAS  Google Scholar 

  2. D. Schlemmer, E. R. de Oliveira and M. J. Araújo Sales, J. Therm. Anal. Cal., 87 (2007) 635.

    Article  CAS  Google Scholar 

  3. Z. Zhong and X. S. Sun, J. Food Eng., 69 (2005) 453.

    Article  Google Scholar 

  4. L. A. Wasserman, M. Signorelli, A. Schiraldi, V. Yuryev, G. Boggini, S. Bertini and D. Fessas, J. Therm. Anal. Cal., 87 (2007) 153.

    Article  CAS  Google Scholar 

  5. F. J. Rodriguez-González, B. A. Ramsay and B. D. Favis, Carbohydr. Polym., 58 (2004) 139.

    Article  CAS  Google Scholar 

  6. M. Stading, A. Rindlav-Westling and P. Gatenholm, Carbohydr. Polym., 45 (2001) 209.

    Article  CAS  Google Scholar 

  7. P. M. Forssell, J. M. Mikkilti, G. K. Moates and R. Parker, Carbohydr. Polym., 34 (1997) 275.

    Article  CAS  Google Scholar 

  8. N. M. Vicentini, N. Dupuy, M. Leitzelman, M. P. Cereda and P. J. A. Sobral, Spectr. Letters, 38 (2005) 749.

    Article  CAS  Google Scholar 

  9. S. Mali, L. S. Sakanaka, F. Yamashita and M. V. E. Grossmann, Carbohydr. Polym., 60 (2005) 283.

    Article  CAS  Google Scholar 

  10. L. Famá, A. M. Rojas, S. Goyanes and L. Gershenson, Lebensm.-Wiss. Technol., 38 (2005) 631.

    Google Scholar 

  11. N. Gontard and S. Ring, J. Agric. Food Chem., 44 (1996) 3474.

    Article  CAS  Google Scholar 

  12. B. Cuq, N. Gontard and S. Guilbert, Polymer, 38 (1997) 2399.

    Article  CAS  Google Scholar 

  13. P. J. A. Sobral, E. S. Monterrey-Quintero and A. M. Q. B. Habitante, J. Therm. Anal. Cal., 67 (2002) 499.

    Article  CAS  Google Scholar 

  14. G. Nashed, R. P. G. Rutgers and P. A. Sopade, Starch/Stärke, 55 (2003) 131.

    Article  CAS  Google Scholar 

  15. J. J. G. van Soest, R. C. Bezemer, D. De Wit and J. F. G. Vliegenthart, Ind. Crop. Prod., 5 (1996) 1.

    Article  Google Scholar 

  16. L. Slade and H. Levine, Crit. Rev. Food Sci. Nutr., 30 (1991) 115.

    Article  CAS  Google Scholar 

  17. Y. Roos, J. Food Eng., 24 (1995) 339.

    Article  Google Scholar 

  18. S. Ablett, M. J. Izzard and P. J. Lillford, J. Chem. Soc., Faraday Trans., 88 (1992) 789.

    Article  CAS  Google Scholar 

  19. A. S. S. Curvelo, A. J. F. de Carvalho and J. A. M. Agnelli, Carbohydr. Polym., 45 (2001) 183.

    Article  CAS  Google Scholar 

  20. V. Garcia, P. Colonna, D. Lourdin, A. Buleon, H. Bizot and M. Ollivon, J. Thermal Anal., 47 (1996) 1213.

    Article  CAS  Google Scholar 

  21. P. Colonna, H. Bizot, A. Buleon, G. Della Valle, D. Lourdin, V. Planchot and P. Roger, Eds, H. A. van Doren and A. C. van Swaaij, Starch 1996, The book. The Netherlands: Carbohydrate Research Foundation, 1997, p. 19.

    Google Scholar 

  22. P. J. A. Sobral, F. C. Menegalli, M. D. Hubinger and M. A. Roques, Food Hydroc., 15 (2001) 423.

    Article  CAS  Google Scholar 

  23. M. T. Kalichevsky, E. M. Jaroszkiewicz and J. M. V. Blanshard, Polymer, 34 (1993) 346.

    Article  CAS  Google Scholar 

  24. K. J. Zeleznak and R. C. Hoseney, Cer. Chem., 64 (1987) 121.

    CAS  Google Scholar 

  25. M. M. Sá and A. M. Sereno, Thermochim. Acta, 246 (1994) 285.

    Article  Google Scholar 

  26. V. R. N. Telis and P. J. A. Sobral, Lebensm.-Wiss. Technol., 34 (2001) 199.

    Article  CAS  Google Scholar 

  27. P. J. A. Sobral, V. R. N. Telis, A. M. Q. B. Habitante and A. Sereno, Thermochim. Acta, 376 (2001) 83.

    Article  CAS  Google Scholar 

  28. F. Franks and S. F. Mathias, Thermochim. Acta, 61 (1983) 195.

    Article  CAS  Google Scholar 

  29. J. W. Donovan and C. J. Mapes, Starch/Stärke, 32 (1980) 190.

    Article  CAS  Google Scholar 

  30. C. G. Biliaderis, C. M. Page, T. J. Maurice and B. O. Juliano, J. Agric. Food Chem., 34 (1986) 6.

    Article  CAS  Google Scholar 

  31. S. Fujita, T. Morita and G. Fujiyama, Starch/Stärke, 45 (1993) 436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. A. Sobral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habitante, A.M.B.Q., Sobral, P.J.A., Carvalho, R.A. et al. Phase transitions of cassava starch dispersions prepared with glycerol solutions. J Therm Anal Calorim 93, 599–604 (2008). https://doi.org/10.1007/s10973-007-8950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8950-6

Keywords

Navigation