Skip to main content
Log in

Thermal properties and phase transitions in blends of Nylon-6 with silk fibroin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal and structural properties of binary blends of Nylon-6 (N6) and a chemically related biopolymer, Bombyx mori silk fibroin (SF), are reported in this work. Homopolymers and blends, in composition ratios of N6/SF ranging from 95/05 to 70/30, were investigated by thermogravimetric (TG) analysis, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and wide angle X-ray scattering (WAXS). Silk fibroin typically degrades at temperatures just above 210°C, which occurs within the melting endotherm of N6. In TG studies, the measured mass remaining was slightly greater than expected, indicating the blends had improved thermal stability. No beta sheet crystals of SF were detected by FTIR analysis of the Amide I region.

Strong interaction between N6 and SF chains was observed, possibly as a result of formation of hydrogen bonds between N6 and SF chains. DSC analysis showed that the addition of SF to N6 caused a decrease in the crystallization temperature, the melting temperature of the lowest melting crystals and the crystallinity of N6. Furthermore, the α-crystallographic phase dominates and the γ-crystallographic phase was not observed in N6/SF blends, in contrast to the homopolymer N6, which contains both phases. We suggest that the addition of SF might result in changes of the chain extension of N6, which lead to the appearance of α-rather than γ-phase crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Illers and H. Haberkorn, Makromol. Chem., 142 (1971) 31.

    Article  CAS  Google Scholar 

  2. M. Kyotani and S. Mitsuhashi, J. Polym. Sci., Part A-2, 10 (1972) 1497.

    Article  CAS  Google Scholar 

  3. N. S. Murthy, S. A. Curran, S. M. Aharoni and H. Minor, Macromolecules, 24 (1991) 3215.

    Article  CAS  Google Scholar 

  4. I. Campoy, M. A. Gomez and C. Marco, Polymer, 39 (1998) 6279.

    Article  CAS  Google Scholar 

  5. T. D. Fornes and D. R. Paul, Polymer, 44 (2003) 3945.

    Article  CAS  Google Scholar 

  6. S. S. Pesetskii, B. Jurkowski, Y. A. Olkhov, S. P. Bogdanovich and V. N. Koval, Eur. Polym. J., 41 (2005) 1380.

    Article  CAS  Google Scholar 

  7. M. Tsukada, G. Freddi, M. Nagura, H. Ishikawa and N. Kasai, J. Appl. Polym. Sci., 46 (1992) 1945.

    Article  CAS  Google Scholar 

  8. X. Hu, D. Kaplan and P. Cebe, Macromolecules, 39 (2006) 6161.

    Article  CAS  Google Scholar 

  9. X. Hu, D. Kaplan and P. Cebe, Thermochim. Acta, 461 (2007) 137.

    Article  CAS  Google Scholar 

  10. H. Y. Kweon, I. C. Um and Y. H. Park, Polymer, 42 (2001) 6651.

    Article  CAS  Google Scholar 

  11. Q. W. Gao, Z. Z. Shao, Y. Y. Sun, H. Lin, P. Zhou and T. Y. Yu, Polymer J., 32 (2000) 269.

    Article  CAS  Google Scholar 

  12. K. Yamaura, N. Kuranuk, M. Suzuki, T. Tanigami and S. Matsuzawa, J. Appl. Polym. Sci., 41 (1990) 2409.

    Article  CAS  Google Scholar 

  13. G. Yang, L. N. Zhang and Y. G. Liu, J. Membr. Sci., 177 (2000) 153.

    Article  CAS  Google Scholar 

  14. E. S. Sashina, G. Janowska, M. Zaborski and A. V. Vnuchkin, J. Therm. Anal. Cal., 89 (2007) 887.

    Article  CAS  Google Scholar 

  15. E. S. Gil, D. J. Frankowski, M. K. Bowman, A. O. Gozen, S. M. Hudson and R. J. Spontak, Biomacromolecules, 7 (2006) 728.

    Article  CAS  Google Scholar 

  16. M. Ishida, T. Asakura, M. Yokoi and H. Saito, Macromolecules, 23 (1990) 88.

    Article  CAS  Google Scholar 

  17. X. Chen, D. P. Knight, Z. Z. Shao and F. Vollrath, Polymer, 42 (2001) 9969.

    Article  CAS  Google Scholar 

  18. A. Motta, L. Fambri and C. Migliaresi, Macromol. Chem. Phys., 203 (2002) 1658.

    Article  CAS  Google Scholar 

  19. N. Agarwal, D. A. Hoagland and R. J. Farris, J. Appl. Polym. Sci., 63 (1997) 401.

    Article  CAS  Google Scholar 

  20. O. N. Tretinnikov and Y. Tamada, Langmuir, 17 (2001) 7406.

    Article  CAS  Google Scholar 

  21. E. Goormaghtigh, V. Cabiaux and J. M. Ruysschaert, Eur. J. Biochem., 193 (1990) 409.

    Article  CAS  Google Scholar 

  22. C. Jung, J. Mol. Recognit., 13 (2000) 325.

    Article  CAS  Google Scholar 

  23. A. Dong, P. Huang and W. S. Caughey, Biochemistry, 29 (1990) 3303.

    Article  CAS  Google Scholar 

  24. Y. Nishio and R. S. Manley, Macromolecules, 21 (1988) 1270.

    Article  Google Scholar 

  25. H. Chen and P. Cebe, J. Therm. Anal. Cal., 89 (2007) 417.

    Article  CAS  Google Scholar 

  26. T. Kyu, Z. L. Zhou, G.C. Zhu, Y. Tajuddin and S. Qutubuddin, J. Polym. Sci., Part B, 34 (1996) 1761.

    Article  CAS  Google Scholar 

  27. V. M. Cheshkov, M. M. Natova, N. R. Ashurov, M. M. Usmanova and A. M. Vekselman, Eur. Polym. J., 27 (1991) 205.

    Article  CAS  Google Scholar 

  28. D. M. Lincoln, R. A. Vaia, Z. G. Wang and B. S. Hsiao, Polymer, 42 (2001) 1621.

    Article  CAS  Google Scholar 

  29. X. Liu and Q. Wu, Polymer, 43 (2002) 1933.

    Article  CAS  Google Scholar 

  30. Q. Wu, X. Liu and L. A. Berglund, Polymer, 43 (2002) 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Cebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Hu, X. & Cebe, P. Thermal properties and phase transitions in blends of Nylon-6 with silk fibroin. J Therm Anal Calorim 93, 201–206 (2008). https://doi.org/10.1007/s10973-007-8885-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8885-y

Keywords

Navigation