Skip to main content
Log in

Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrotalcites containing carbonate, vanadate and molybdate were prepared by coprecipitation. The resulting materials were characterized by XRD, and TG/DTA to determine the stability of the hydrotalcites synthesized. The thermal decomposition of carbonate hydrotalcites consist of two decomposition steps between 300 and 400°C, attributed to the simultaneous dehydroxylation and decarbonation of the hydrotalcite lattice. Water loss ascribed to dehydroxylation occurs in two decomposition steps, where the first step is due to the partial dehydroxylation of the lattice, while the second step is due to the loss of water interacting with the interlayer anions. Dehydroxylation results in the collapse of the hydrotalcite structure to that of its corresponding metal oxides, including MgO, Al2O3, MgAl2O4, NaMg4(VO4)3 and Na2Mg4(MoO4)5. The presence of oxy-anions proved to be beneficial in the stability of the hydrotalcite structure, shown by the delay in dehydroxylation of oxy-anion containing hydrotalcites compared to the carbonate hydrotalcite. This is due to the substantial amount of hydroxyl groups involved in a network of hydrogen bonds involving the intercalated anions. Therefore, the stability of the hydrotalcite structure appears to be dependent on the type of anion present in the interlayer. The order of thermal stability for the synthesized hydrotalcites in this study is Syn-HT-V>Syn-HT-Mo> Syn-HT-CO3-V>Syn-HT-CO3-Mo>Syn-HT-CO3. Carbonate containing hydrotalcites prove to be less stable than oxy-anion only hydrotalcites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Frost, W. Martens, Z. Ding, J. T. Kloprogge and T. E. Johnson, Spectrochim. Acta, Part A: Molecular Biomolecular Spectrosc., 59A (2003) 291.

    Article  CAS  Google Scholar 

  2. R. L. Frost, Z. Ding, W. N. Martens, T. E. Johnson and J. T. Kloprogge, Spectrochim. Acta, Part A: Molecular Biomolecular Spectrosc., 59A (2003) 321.

    Article  CAS  Google Scholar 

  3. J. T. Kloprogge and R. L. Frost, J. Solid State Chem., 146 (1999) 506.

    Article  CAS  Google Scholar 

  4. R. L. Frost, J. Kristóf, E. Horváth and J. T. Kloprogge, J. Raman Spectrosc., 32 (2001) 873.

    Article  CAS  Google Scholar 

  5. J. M. Bouzaid, R. L. Frost, A. W. Musumeci and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 745.

    Article  CAS  Google Scholar 

  6. R. L. Frost and Z. Ding, Thermochim. Acta, 405 (2003) 207.

    Article  CAS  Google Scholar 

  7. R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 217.

    Article  CAS  Google Scholar 

  8. R. L. Frost and K. L. Erickson, Thermochim. Acta, 421 (2004) 51.

    Article  CAS  Google Scholar 

  9. R. L. Frost, W. Martens and M. O. Adebajo, J. Therm. Anal. Cal., 81 (2005) 351.

    Article  CAS  Google Scholar 

  10. R. L. Frost, W. Martens, Z. Ding and J. T. Kloprogge, J. Therm. Anal. Cal., 71 (2003) 429.

    Article  CAS  Google Scholar 

  11. R. L. Frost, A. W. Musumeci, T. Bostrom, M. O. Adebajo, M. L. Weier and W. Martens, Thermochim. Acta, 429 (2005) 179.

    Article  CAS  Google Scholar 

  12. R. L. Frost, A. W. Musumeci, J. T. Kloprogge, M. L. Weier, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 86 (2006) 205.

    Article  CAS  Google Scholar 

  13. Y.-H. Lin, M. O. Adebajo, R. L. Frost and J. T. Kloprogge, J. Therm. Anal. Cal., 81 (2005) 83.

    Article  CAS  Google Scholar 

  14. H. C. B. Hansen and C. B. Koch, Appl. Clay Sci., 10 (1995) 5.

    Article  CAS  Google Scholar 

  15. E. Horváth, J. Kristóf, R. L. Frost, N. Heider and V. Vágvölgyi, J. Therm. Anal. Cal., 78 (2004) 687.

    Article  Google Scholar 

  16. R. L. Frost, M. L. Weier and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 1025.

    Article  CAS  Google Scholar 

  17. R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 78 (2004) 367.

    Article  CAS  Google Scholar 

  18. E. Horváth, J. Kristóf, R. L. Frost, A. Redey, V. Vágvölgyi and T. Cseh, J. Therm. Anal. Cal., 71 (2003) 707.

    Article  Google Scholar 

  19. J. Kristóf, R. L. Frost, J. T. Kloprogge, E. Horváth and E. Makó, J. Therm. Anal. Cal., 69 (2002) 77.

    Article  Google Scholar 

  20. F. Rey, V. Fornes and J. M. Rojo, J. Chem. Soc., Faraday Trans., 88 (1992) 2233.

    Article  CAS  Google Scholar 

  21. M. Valcheva-Traykova, N. Davidova and A. Weiss, J. Mater. Sci., 28 (1993) 2157.

    Article  CAS  Google Scholar 

  22. G. Lichti and J. Mulcahy, Chem. Australia, 65 (1998) 10.

    CAS  Google Scholar 

  23. Y. Seida and Y. Nakano, J. Chem. Eng. Jpn., 34 (2001) 906.

    Article  CAS  Google Scholar 

  24. Y. Roh, S. Y. Lee, M. P. Elless and J. E. Foss, Clays Clay Miner., 48 (2000) 266.

    Article  CAS  Google Scholar 

  25. Y. Seida, Y. Nakano and Y. Nakamura, Water Res., 35 (2001) 2341.

    Article  CAS  Google Scholar 

  26. J. T. Kloprogge, D. Wharton, L. Hickey and R. L. Frost, Am. Mineral., 87 (2002) 623.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, S.J., Frost, R.L. & Nguyen, T. Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayer. J Therm Anal Calorim 92, 879–886 (2008). https://doi.org/10.1007/s10973-007-8642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8642-2

Keywords

Navigation