Skip to main content
Log in

Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture

  • Regular Papers
  • Organics/Polymers
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work a series of solid sorbents were synthesized by immobilizing liquid amines on the surface of a mesoporous alumina. The samples were chemically characterized and BET surface areas calculated from the N2 adsorption isotherms at 77 K. The CO2 capture performance of the sorbents and their thermal stability was studied by thermogravimetric methods. The effect of amine loading on the CO2 capture performance of the prepared sorbents was also evaluated. Analysis of TG-DTG curves showed that thermal stabilization of the amines is significantly improved by immobilizing them on an inorganic support. Temperature-programmed CO2 adsorption tests from 298 K up to 373 K at atmospheric pressure, proved to be a useful technique for assessing the capacity of sorbents for CO2 capture. Alumina impregnated with diethylenetriamine presented the highest CO2 adsorption capacities throughout the tested temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climate Change 2007: The Physical Science Basis. IPCC, 2007. http://www.ipcc.ch/SPM2feb07.pdf.

  2. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, 2005.

  3. Z. Yong, V. G. Mata and A. R. E. Rodrigues, Adsorption, 7 (2001) 41.

    Article  CAS  Google Scholar 

  4. T. Hayashi, M. Kumita and Y. Otani, Environ. Sci. Technol., 39 (2005) 5436.

    Article  CAS  Google Scholar 

  5. H. Kasaini, Sep. Sci. Technol., 36 (2001) 2845.

    Article  CAS  Google Scholar 

  6. J. A. C. Alves, C. Freire, B. de Castro and J. L. Figueiredo, Colloids and Surfaces A: Physicochem. Eng. Aspects, 189 (2001) 75.

    Article  CAS  Google Scholar 

  7. D. A. Buttry, J. C. M. Peng, J.-B. Donnet and S. Rebouillat, Carbon, 37 (1999) 1929.

    Article  CAS  Google Scholar 

  8. W. Yantasee, Y. Lin, K. L. Alford, B. J. Busche, G. E. Fryxell and M. H. Engelhard, Sep. Sci. Technol., 39 (2004) 3263.

    Article  CAS  Google Scholar 

  9. X. Xu, C. Song, B. G. Miller and A. W. Scaroni, Fuel Process. Technol., 86 (2005) 1457.

    Article  CAS  Google Scholar 

  10. M. L. Gray, Y. Soong, K. J. Champagne, H. Pennline, J. P. Baltrus, R. W. Stevens Jr., R. Khatri, S. S. C. Chuang and T. Filburn, Fuel Process. Technol., 86 (2005) 1449.

    Article  CAS  Google Scholar 

  11. G. P. Knowles, S. W. Delaney and A. L. Chaffee, Ind. Eng. Chem. Res., 45 (2006) 2626.

    Article  CAS  Google Scholar 

  12. A. Arenillas, K. M. Smith, T. C. Drage and C. E. Snape, Fuel, 84 (2005) 2204.

    Article  CAS  Google Scholar 

  13. P. J. Birbara and T. A. Nalette, Regenerable supported amine-polyol sorbent, 1994. United Technologies Corporation, United States.

    Google Scholar 

  14. S. Satyapal, T. Filburn, J. Trela and J. Strange, Energy Fuels, 15 (2001) 250.

    Article  CAS  Google Scholar 

  15. M. M. Maroto-Valer, Z. Tang and Y. Zhang, Fuel Process. Technol., 86 (2005) 1487.

    Article  CAS  Google Scholar 

  16. J. U. Keller and E. Robens, J. Therm. Anal. Cal., 71 (2003) 37.

    Article  CAS  Google Scholar 

  17. T. Lupascu, I. Dranca, V. T. Popa and M. Vass, J. Therm. Anal. Cal., 63 (2001) 855.

    Article  CAS  Google Scholar 

  18. K. Chrissafis and K. M. Paraskevopoulos, J. Therm. Anal. Cal., 81 (2005) 463.

    Article  CAS  Google Scholar 

  19. V. L. Budarin, J. H. Clark, A. A. Gorlova, N. A. Boldyreva and V. K. Yatsimirsky, J. Therm. Anal. Cal., 62 (2000) 349.

    Article  CAS  Google Scholar 

  20. L. Wachowski and M. Hofman, J. Therm. Anal. Cal., 83 (2006) 379.

    Article  CAS  Google Scholar 

  21. M. M. G. R. Vianna, J. Dweck, V. F. J. Kozievitch, F. R. Valenzuela-Diaz and P. M. Buchler, J. Therm. Anal. Cal., 82 (2005) 595.

    Article  Google Scholar 

  22. N. A. Seaton, J. P. R. B. Walton and N. Quirke, Carbon, 27 (1989) 853.

    Article  CAS  Google Scholar 

  23. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, Microporous Mesoporous Mater., 62 (2003) 29.

    Article  CAS  Google Scholar 

  24. J. S. Noh and J. A. Schwarz, J. Colloid Interface Sci., 130 (1988) 157.

    Article  Google Scholar 

  25. J. B. Parra, J. C. de Sousa, R. C. Bansal, J. J. Pis and J. A. Pajares, Adsorp. Sci. Technol., 12 (1995) 51.

    CAS  Google Scholar 

  26. I. Pitkanen, J. Huttunen, H. Halttunen and R. Vesterinen, J. Therm. Anal. Cal., 56 (1999) 1253.

    Article  CAS  Google Scholar 

  27. J. P. Reymond and F. Kolenda, Powder Technol., 103 (1999) 30.

    Article  CAS  Google Scholar 

  28. T. L. Donaldson and Y. N. Nguyen, Ind. Eng. Chem. Fundam., 19 (1980) 260.

    Article  CAS  Google Scholar 

  29. E. F. da Silva and H. F. Svendsen, Chemistry of solvents for CO2 capture. In: 8th International Conference on Greenhouse Gas Control Technologies, Trondheim 2006.

  30. G. Sartori and D. W. Savage, Ind. Eng. Chem. Fundam., 22 (1983) 239.

    Article  CAS  Google Scholar 

  31. X. Xu, C. Song, J. M. Andresen, B. G. Miller and A. W. Scaroni, Energy Fuels, 16 (2002) 1463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rubiera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaza, M.G., Pevida, C., Arias, B. et al. Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture. J Therm Anal Calorim 92, 601–606 (2008). https://doi.org/10.1007/s10973-007-8493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8493-x

Keywords

Navigation