Skip to main content
Log in

Rational mechanochemical processes with less intensive stressing for their affordable application

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An overview is given on the application of mechanical activation to various fields of solid state processes. Opposite to the historical development, emphasis is laid to give mechanical energy as sparingly as possible to the point where mechanical stressing is indispensable. Case studies were demonstrated in three different genres, i.e., organic synthesis, electroceramics and utilization of mineral resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Boldyrev and K. Meyer, Festkörperchemie, VEB Deutscher Verlag für Grundstoffindustrie, Berlin 1973.

    Google Scholar 

  2. G. Heinicke, Tribochemistry, Akademie Verlag, Berlin 1984.

    Google Scholar 

  3. A. Z. Juhász and L. Opoczky, Mechanical Activation of Minerals by Grinding, Akadémiai Kiadó, Budapest 1990.

    Google Scholar 

  4. K. Tkacova, Mechanical Activation of Minerals, Elsevier, Amsterdam 1989.

    Google Scholar 

  5. E. M. Gutman, Mechanochemistry of Materials, Cambridge International Sci. Publ., 1998

  6. P. Balaz, Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam 2000.

    Google Scholar 

  7. E. Avvakumov, M. Senna and N. Kosova, Soft Mechanochemical Synthesis, Kluwer Acad. Publ., New York 2001, pp. 145–166.

    Google Scholar 

  8. M. Senna, Solid State Ionics, 63–65 (1993) 3.

    Article  Google Scholar 

  9. M. Senna, Chem. Rev., 123 (1998) 263.

    Google Scholar 

  10. M. Senna, Mater. Sci. Eng. A, A304–306 (2001) 39.

    Google Scholar 

  11. M. Senna, Ann. Chem. Sci. Mater., 27 (2002) 3.

    Article  CAS  Google Scholar 

  12. M. Senna, J. Mater. Sci., 39 (2004) 4995.

    Article  CAS  Google Scholar 

  13. M. Senna, Mater. Sci. Eng. A, A412 (2005) 37.

    CAS  Google Scholar 

  14. M. Senna, J. Eur. Ceram. Soc., 25 (2005) 977.

    Article  CAS  Google Scholar 

  15. N. Tsuchiya, A. Tsukamoto, T. Oshita, T. Isobe, M. Senna, N. Yoshioka and H. Inoue, Solid State Sci., 3 (2001) 705.

    Article  CAS  Google Scholar 

  16. N. Tsuchiya, A. Tsukamoto, T. Ohshita, T. Isobe, M. Senna, N. Yoshioka and H. Inoue, J. Solid State Chem., 153 (2000) 82.

    Article  CAS  Google Scholar 

  17. T. Ohshita, A. Tsukamoto and M. Senna, Phys. Status Solidi A, 201 (2004) 762.

    Article  CAS  Google Scholar 

  18. T. Ohshita, D. Nakajima, A. Tsukamoto, N. Tsuchiya, T. Isobe, M. Senna, N. Yoshioka and H. Inoue, Ann. Chem. Sci. Mater., 27 (2002) 91.

    Article  CAS  Google Scholar 

  19. S. V. Goryainov, E. N. Kolesnik and E. Boldyreva, Physica, B — Condens. Matter, 357 (2005) 340.

    CAS  Google Scholar 

  20. D. Braga, L. Maini, G. de Sanctis, K. Rubini, F. Grepioni, M. R. Chierotti and R. Gobetto, Chem. Eur. J., 9 (2003) 5538.

    Article  CAS  Google Scholar 

  21. A. V. Trask and W. Jones, Org. Solid State Reactions Topics, Current Chem., 254 (2005) 41.

    CAS  Google Scholar 

  22. H. Oguchi, C. Ando, H. Chazono, H. Kish and M. Senna, J. Phys. IV France, 128 (2005) 33.

    Article  CAS  Google Scholar 

  23. C. Ando, H. Kshi, H, Oguchi and M. Senna, J. Am. Ceram. Soc., 89 (2006) 1709.

    Article  CAS  Google Scholar 

  24. J. Temuujin, M. Senna, Ts. Jadambaa and D. Byambasuren, J. Metastable Nanocryst. Mater., 24–25, (2005) 581.

    Article  Google Scholar 

  25. J. Temuujin, M. Senna, Ts. Jadambaa and D. Byambasuren, J. Am. Ceram. Soc., 88 (2005) 983.

    Article  CAS  Google Scholar 

  26. T. Sakurai, Acta Cryst., 19 (1965) 320.

    Article  CAS  Google Scholar 

  27. K. Sundaram, Int. J. Quantum Chem., 5 (1971) 101.

    Article  CAS  Google Scholar 

  28. T. Sakurai, Acta Cryst., B24 (1968) 403.

    Google Scholar 

  29. G. G. Shipley and S. C. Wallwork, Acta Cryst., 22 (1967) 585.

    Article  CAS  Google Scholar 

  30. N. B. Singh and N. N. Singh, J. Solid State Chem., 71 (1987) 530.

    Article  CAS  Google Scholar 

  31. N. B. Singh and N. P. Singh, Indian J. Chem., 31 (1992) 608.

    Google Scholar 

  32. R. Kuroda, Y. Imai and N. Tajima, Chem. Commun., 2002 (2002) 2848.

    Article  CAS  Google Scholar 

  33. E. Y. Cheung, S. J. Kitchin, K. D. M. Harris, Y. Imai, N. Tajima and R. Kuroda, J. Am. Chem. Soc., 125 (2003) 14658.

    Google Scholar 

  34. F. Toda, M. Senzaki and R. Kuroda, Chem. Commun., 2002 (2002) 1788.

    Article  CAS  Google Scholar 

  35. H. Watanabe and M. Senna, Tetrahedron Lett., 47 (2006) 4481.

    Article  CAS  Google Scholar 

  36. R. Hiraoka, H. Watanabe and M. Senna, Tetrahedron Lett., 47 (2006) 3111.

    Article  CAS  Google Scholar 

  37. M. Kubinyi and G. Varasanyi, Spectrosc. Lett., 9 (1976) 689.

    Article  CAS  Google Scholar 

  38. J. G. Beak, T. Isobe and M. Senna, J. Am. Ceram. Soc., 80 (1997) 973.

    Article  Google Scholar 

  39. S. Komatsubara, T. Isobe and M. Senna, J. Am. Ceram. Soc., 77 (1994) 278.

    Article  CAS  Google Scholar 

  40. M. Senna, T. Kinoshita, Y. Abe, H. Kishi, C. Ando, Y. Doshida and B. Stojanovic, J. Eur. Ceram. Soc., in press.

  41. J. Temuujin, M. Aoyama, M. Senna, T. Masuko, C. Ando and H. Kishi, Mater. Res. Bull., in press

  42. J. Temuujin, M. Aoyama, M. Senna, T. Masuko, C. Ando and H. Kishi, J. Solid State Chem., 177 (2004) 3903.

    Article  CAS  Google Scholar 

  43. J. Temuujin, M. Aoyama, M. Senna, M. T. Masuko, C. Ando and C. H. Kishi, J. Mater. Res., 20 (2005) 1939.

    Article  CAS  Google Scholar 

  44. M. Aoyama, J. Temuujin, M. Senna, T. Masuko, C. Ando and H. Kishi, J. Electroceram., 17 (2006) 59.

    Article  CAS  Google Scholar 

  45. J. Temuujin, M. Senna, Ts. Jadambaa and D. Byambasuren, J. Metastable Nanocryst. Mater., 24–25 (2005) 581.

    Google Scholar 

  46. J. Temuujin, M. Senna, Ts. Jadambaa and D. Byambasuren, J. Am. Ceram. Soc., 88 (2005) 983.

    Article  CAS  Google Scholar 

  47. N. J. Welham, Am. Inst. Chem. Eng. J., 46 (2000) 68.

    CAS  Google Scholar 

  48. G. M. Wang, S. J. Campbell, A. Calka and W. A. Kaczmarek, J. Mater. Sci., 32 (1997) 1461.

    Article  CAS  Google Scholar 

  49. S. I. Cha and S. H. Hong, J. Metastable Nanocryst. Mater., 15–16 (2003) 319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Senna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senna, M. Rational mechanochemical processes with less intensive stressing for their affordable application. J Therm Anal Calorim 90, 107–113 (2007). https://doi.org/10.1007/s10973-007-8483-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8483-z

Keywords

Navigation