Skip to main content
Log in

Mechanochemistry of sulphides

From minerals to advanced nanocrystalline materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

At present mechanochemistry of sulphides appears to be a science with a sound theoretical foundation exhibiting a wide range effectiveness in different areas of science and technology. For traditional application mechanochemistry is of exceptional importance in extractive metallurgy of sulphidic ores where many technological processes have been developed. Metal sulphides can be also utilized in emerging nanotechnology with application as advanced luminescence, optoelectronic, magnetic and catalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tkáčová, Mechanical Activation of Minerals, Elsevier, Amsterdam 1989.

    Google Scholar 

  2. P. Baláž, Extractive Metallurgy of Activated Minerals, Elsevier, Amsterdam 2000.

    Google Scholar 

  3. P. Baláž, J. Ficeriová, V. Šepelák and R. Kammel, Hydromet., 43 (1996) 367.

    Article  Google Scholar 

  4. J. Ficeriová, Possibilities of Mechanical Activation at Intensification of Non-cyanide Leaching of Gold Bearing Concentrates, Ph.D. Thesis, Institute of Geotechnics, Slovak Academy of Sciences, Košice 2000 (in Slovak).

    Google Scholar 

  5. J. Ficeriová, P. Baláž, E. Boldižárová and S. Jeleň, Hydromet., 67 (2002) 37.

    Article  Google Scholar 

  6. P. Baláž, J. Ficeriová and C. Villachica, Hydromet., 70 (2003) 113.

    Article  CAS  Google Scholar 

  7. P. Baláž, R. Kammel and M. Achimovičová, Metall, 48 (1994) 217.

    Google Scholar 

  8. P. Baláž, F. Sekula, Š. Jakabský and R. Kammel, Miner. Eng., 8 (1995) 1299.

    Article  Google Scholar 

  9. M. Achimovičová, Intensification of Chemical Pretreatment of Sulphidic Minerals, Ph.D. Thesis, Institute of Geotechnics, Slovak Academy of Sciences, Košice 1998 (in Slovak).

    Google Scholar 

  10. P. Baláž, M. Achimovičová, J. Ficeriová, R. Kammel and V. Šepelák, Hydromet., 47 (1998) 297.

    Article  Google Scholar 

  11. P. Baláž, Mater. Sci. Forum, 312–314 (1999) 215.

    Google Scholar 

  12. P. Baláž, Metall, 54 (2000) 190.

    Google Scholar 

  13. E. Godočíková, Chloride Leaching of Mechanically Activated Complex CuPbZn Concentrate, Ph.D. Thesis, Institute of Geotechnics, Slovak Academy of Sciences, Košice 2001 (in Slovak).

    Google Scholar 

  14. P. Baláž, Z. Bastl, T. Havlík, J. Lipka and I. Tóth, Mater. Sci. Forum, 235–238 (1997) 217.

    Google Scholar 

  15. P. Baláž, L. Takacs, T. Ohtani, D. E. Mack, E. Boldižárová, V. Soika and M. Achimovičová, J. Alloys Compd., 337 (2002) 76.

    Article  Google Scholar 

  16. P. Baláž, L. Takacs, J. Z. Jiang, V. Soika and M. Luxová, Mater. Sci. Forum, 386–388 (2002) 257.

    Google Scholar 

  17. P. Paláž, E. Boldižárová, E. Godočíková and J. Briančin, Mater. Lett., 57 (2003) 1585.

    Article  Google Scholar 

  18. P. Baláž, L. Takacs, E. Boldižárová and E. Godočíková, J. Phys. Chem. Solids, 64 (2003) 1413.

    Article  CAS  Google Scholar 

  19. V. V. Lodejščikov and I. D. Ignateva, Processing of Silver Bearing Ores, Nedra, Moscow 1973 (in Russian).

    Google Scholar 

  20. I. J. Corrans and J. E. Angove, Miner. Eng., 4 (1991) 763.

    Article  Google Scholar 

  21. G. Heinicke, Tribochemistry, Akademie — Verlag, Berlin 1984.

    Google Scholar 

  22. V. G. Gould, Eng. Min. J., 156 (1955) 91.

    CAS  Google Scholar 

  23. H. Gleiter, Progr. Mater. Sci., 33 (1989) 223.

    Article  CAS  Google Scholar 

  24. H. Gleiter, Nanostruct. Mater., 1 (1992) 1.

    Article  CAS  Google Scholar 

  25. H. Gleiter, Nanostruct. Mater., 6 (1995) 3.

    Article  CAS  Google Scholar 

  26. H. Gleiter, Acta Mater., 48 (2000) 1.

    Article  CAS  Google Scholar 

  27. C. Suryanarayana, Int. Mater. Rev., 40 (1995) 41.

    CAS  Google Scholar 

  28. B. S. Murty and S. Ranganathan, Int. Mater. Rev., 43 (1998) 101.

    CAS  Google Scholar 

  29. J. S. Benjamin, Metall. Trans., 1 (1970) 2946.

    Google Scholar 

  30. J. S. Benjamin, Sci. Am., 234 (1976) 40.

    Article  CAS  Google Scholar 

  31. C. C. Koch, Nanostruct. Mater., 2 (1993) 109.

    Article  CAS  Google Scholar 

  32. A. R. Yavari, Mater. Trans. JIM, 36 (1995) 228.

    CAS  Google Scholar 

  33. P. G. McCormick, Mater. Trans. JIM, 36 (1995) 161.

    CAS  Google Scholar 

  34. C. C. Koch, Nanostruct. Mater., 9 (1997) 13.

    Article  CAS  Google Scholar 

  35. E. Gaffet, F. Bernard, J.-C. Niepce, F. Charlot, Ch. Gras, G. Le Caër, J.-L. Guichard, P. Delcroix, A. Mocellin and O. Tillement, J. Mater. Chem., 9 (1999) 305.

    Article  CAS  Google Scholar 

  36. C. Suryanarayana, Progr. Mater. Sci., 46 (2001) 1.

    Article  CAS  Google Scholar 

  37. C. Suryanarayana, E. Ivanov and V. V. Boldyrev, Mater. Sci. Eng. A, 304–306 (2001) 151.

    Google Scholar 

  38. L. Takacs, Progr. Mater. Sci., 47 (2002) 355.

    Article  CAS  Google Scholar 

  39. O. Kubaschewski and L. L. Evans, Metallurgical Thermochemistry, Pergamon Press, London 1995.

    Google Scholar 

  40. P. Baláž, L. Takacs, J. Z. Jiang, V. Soika and M. Luxová, Mater. Sci. Forum, 386–388 (2002) 257.

    Google Scholar 

  41. P. Baláž, E. Godočíková, Z. Bastl, J. Z. Jiang, E. Boldižárová and M. Luxová, Czech. J. Phys., 52 (2002) A65.

    Google Scholar 

  42. E. Godočíková, P. Baláž, E. Boldižárová, I. Škorvánek, J. Kováč and W. Choi, J. Mater. Sci., 39 (2004) 5353.

    Article  Google Scholar 

  43. R. Houbertz, W. Krauss, R. Birringer and U. Hartmann, Nanostruct. Mater., 9 (1997) 339.

    Article  CAS  Google Scholar 

  44. S. H. Yu Wu, J. Yang, Z. H. Han, Y. Xie, Y. T. Qian and X. M. Lin, Chem. Mater., 10 (1998) 2309.

    Article  Google Scholar 

  45. L. Takacs and M. A. Susol, J. Solid State Chem., 121 (1996) 394.

    Article  CAS  Google Scholar 

  46. L. Takacs, Mater. Sci. Forum, 269–272 (1998) 513.

    Article  Google Scholar 

  47. T. Ohtani, K. Maruyama and K. Ohsima, Mater. Res. Bull., 32 (1997) 343.

    Article  CAS  Google Scholar 

  48. T. Ohtani, A. Tsubota and K. Ohsima, Mater. Res. Bull., 34 (1999) 1143.

    Article  CAS  Google Scholar 

  49. T. Tsuzuki and P. G. McCormick, Appl. Phys., A65 (1997) 607.

    Google Scholar 

  50. T. Tsuzuki and P. G. McCormick, Nanostruct. Mater., 12 (1999) 75.

    Article  Google Scholar 

  51. R. Lin, J. Z. Jiang, R. K. Larsen, S. Morup and F. J. Berry, Hyperfine Interact. C, 3 (1998) 45.

    Google Scholar 

  52. J. Z. Jiang, R. K. Larsen, R. Lin, S. Morup, K. Chorkendorff, K. Nielsen, K. Hansen and K. West, J. Solid State Chem., 138 (1998) 114.

    Article  CAS  Google Scholar 

  53. F. Saito, Q. Zhang and J. Kano, J. Mater. Sci., 39 (2004) 5051.

    Article  CAS  Google Scholar 

  54. V. V. Boldyrev, Russ. Chem. Rev., 75 (2006) 177.

    Article  CAS  Google Scholar 

  55. M. T. Nenadovice, M. I. Comor, V. Vasic and O. I. Micie, J. Phys. Chem., 94 (1990) 6390.

    Article  Google Scholar 

  56. W. Wang, Y. Liu, Y. Zhan, Ch. Zheng and G. Wang, Mater. Res. Bull., 36 (2001) 1977.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Baláž.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baláž, P., Dutková, E. Mechanochemistry of sulphides. J Therm Anal Calorim 90, 85–92 (2007). https://doi.org/10.1007/s10973-007-8480-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8480-2

Keywords

Navigation