Skip to main content
Log in

High-temperature thermal behaviour of Cr-Doped LiMn2O4 spinels synthesized by the sucrose-aided combustion method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Chromium doped spinels LiCrYMn2−YO4 (0.2≤Y≤0.8) has been synthesized by the sucrose-aided combustion procedure. The thermal behaviour, phase homogeneity and structural characteristics of the samples were studied by thermal analysis, coupled mass spectrometry, and room-and high-temperature X-ray diffraction methods. It was found that the ‘as prepared’ samples contained residual organic impurities undetectable for X-ray diffraction, that burn out completely at 400°C. Samples treated between 400 and 750°C are single phase spinels, whose crystallites size increase from 10 to 50 nm on increasing the temperature. Cr-doping enhances the thermal stability of the spinels, which augments on increasing the Cr content Y. The enhanced thermal stability of the spinels has been accounted for based on the high excess stabilization energy of Cr3+ in octahedral ligand field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Kingsley and K. C. Patil, Mater. Lett., 6 (1988) 427.

    Article  CAS  Google Scholar 

  2. H. C. Yi and J. J. Moore, J. Mater. Sci., 25 (1990) 1159.

    CAS  Google Scholar 

  3. S. S. Manoharan, N. R. S. Kumar and K. C. Patil, Mater. Res. Bull., 25 (1990) 731.

    Article  CAS  Google Scholar 

  4. Y. Zhang and G. C. Stangle, J. Mater. Res., 9 (1994) 1997.

    CAS  Google Scholar 

  5. D. Huang, K. R. Venkatachari and G. S. Stangle, J. Mater. Res., 10 (1995) 762.

    CAS  Google Scholar 

  6. E. J. Bosze, J. McKittrick, G. A. Hirata and L. E. Shea, C. R. Ronda, K. S. Misra, L. Shea, A. Srivastava and H. Yamamoto, Eds, Physics and Chemistry of Luminescent Materials, 99-40, Honolulu, Hawaii, 1999, Electrochem. Soc. Symp., Proc., p. 176.

  7. T. Mimani and K. C. Patil, Mater. Phys. Mech., 4 (2001) 134.

    CAS  Google Scholar 

  8. R. Garcia, G. A. Hirata and J. McKittrick, J. Mater. Res., 16 (2001) 1059.

    Article  CAS  Google Scholar 

  9. D. Kovacheva, H. Gadjov, K. Petrov, S. Mandal, M. G. Lazarraga, L. Pascual, J. M. Amarilla, R. M. Rojas, P. Herrero and J. M. Rojo, J. Mater. Chem., 12 (2002) 1184.

    Article  CAS  Google Scholar 

  10. M. G. Lazarraga, L. Pascual, H. Gadjov, D. Kovacheva, K. Petrov, J. M. Amarilla, R. M. Rojas, M. A. Martín-Luengo and J. M. Rojo, J. Mater. Chem., 14 (2004) 1640.

    Article  CAS  Google Scholar 

  11. L. Pascual, H. Gadjov, D. Kovacheva, K. Petrov, J. M. Amarilla, P. Herrero, R. M. Rojas and J. M. Rojo, J. Electrochem. Soc., 152 (2005) A301.

    Article  CAS  Google Scholar 

  12. R. M. Rojas, J. M. Amarilla, L. Pascual, J. M. Rojo, D. Kovacheva and K. Petrov, J. Power Sources, 160 (2006) 529.

    Article  CAS  Google Scholar 

  13. J. Laugier and A. Filhol, CelRef, PC version (unpublished) ILL, Grenoble, France (1991).

    Google Scholar 

  14. M. D. Judd, B. A. Plunkett and M. I. Pope, J. Thermal Anal., 6 (1974) 555.

    Article  CAS  Google Scholar 

  15. L. Patron, O. Carp, I. Mindru, G. Marinescu and E. Segal, J. Therm. Anal. Cal., 72 (2003) 281.

    Article  CAS  Google Scholar 

  16. M. M. Thackeray, M. F. Mansueto, D. W. Dees and D. R. Vissers, Mater. Res. Bull., 31 (1996) 133.

    Article  CAS  Google Scholar 

  17. J. M. Paulsen and J. R. Dahn, Chem. Mater., 11 (1999) 3065.

    Article  CAS  Google Scholar 

  18. W. Baochen, X. Yongyao, F. Li and Z. Dongjiang, J. Power Sources, 43 (1993) 539.

    Article  Google Scholar 

  19. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard and M. Tournoux, Solid State Ionics, 81 (1995) 167.

    Article  CAS  Google Scholar 

  20. S.-J. Hong, S.-H. Chang and Ch.-H. Yo, Bull. Korean Chem. Soc., 20 (1999) 53.

    CAS  Google Scholar 

  21. M. Kaneko, S. Matsuno, T. Miki, M. Nakayama, H. Ikuta, Y. Uchimoto, M. Wakihara and K. Kawamura, J. Phys. Chem. B, 107 (2003) 1727.

    Article  CAS  Google Scholar 

  22. R. D. Shannon, Acta Crystallogr., A32 (1976) 751.

    CAS  Google Scholar 

  23. A. Yamada and M. Tanaka, Mater. Res. Bull., 30 (1995) 715.

    Article  CAS  Google Scholar 

  24. G. Rousse, C. Masquelier, J. Rodríguez-Carvajal and M. Hervieu, Electrochim. Solid State Lett., 2 (1999) 6.

    Article  CAS  Google Scholar 

  25. J. Sugiyama, T. Atsumi, A. Koiwai, T. Saski, T. Hioki, S. Noda and N. Kamegashira, J. Phys. Condens. Matter., 9 (1997) 1729.

    Article  CAS  Google Scholar 

  26. Y. Xia, T. Sakai, T. Fujieda, X. Q. Yang, X. Sun, Z. F. Ma, J. Mc Breen and M. Yoshio, J. Electrochem. Soc., 148 (2001) A723.

    Article  CAS  Google Scholar 

  27. M. Tachibana, T. Tojo, H. Kawaji and T. Atake, Phys. Rev., B68 (2003) 094421.

  28. G. G. Amatucci, C. N. Schmutz, A. Blyr, C. Sigala, A. S. Godz, D. Larcher and J. M. Tarascon, J. Power Sources, 69 (1997) 11.

    Article  CAS  Google Scholar 

  29. T. Tsuji, M. Nago, Y. Yamamura and N. Tien Tai, Solid State Ionics, 154 (2002) 381.

    Article  Google Scholar 

  30. R. Dziembaj and M. Molenda, J. Power Sources, 119–121 (2003) 121.

    Article  CAS  Google Scholar 

  31. H. Ikuta, K. Tanaka and M. Wakihara, Thermochim. Acta, 414 (2004) 227.

    Article  CAS  Google Scholar 

  32. J. Molenda, D. Pałubiak and J. Marzec, J. Power Sources, 144 (2005) 176.

    Article  CAS  Google Scholar 

  33. R. Yamaguchi, H. Ikuta and M. Wakihara, J. Therm Anal. Cal., 57 (1999) 797.

    Article  CAS  Google Scholar 

  34. J. M. Tarascon, W. R. McKinnon, F. Coowar, T. N. Bowmer, G. Amatucci and D. Guyomard, J. Electrochem. Soc., 141 (1994) 1421.

    Article  CAS  Google Scholar 

  35. Z. Wang, H. Ikuta, Y. Uchimoto and M. Wakihara, J. Electrochem. Soc., 150 (2003) A1250.

    Article  CAS  Google Scholar 

  36. A. Yamada, K. Miura, K. Hinokuma and M. Tanaka, J. Electrochem. Soc., 142 (1995) 2149.

    Article  CAS  Google Scholar 

  37. Y. Gao and J. R. Dahn, Appl. Phys. Lett., 66 (1995) 2487.

    Article  CAS  Google Scholar 

  38. D. Dunitz and L. E. Orgel, Advances in Inorganic Chemistry, Academic Press Inc., San Diego 1960, Vol. 2, pp. 1–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Maria Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, R.M., Petrov, K., Avdeev, G. et al. High-temperature thermal behaviour of Cr-Doped LiMn2O4 spinels synthesized by the sucrose-aided combustion method. J Therm Anal Calorim 90, 67–72 (2007). https://doi.org/10.1007/s10973-007-8477-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8477-x

Keywords

Navigation