Skip to main content
Log in

Thermal evolution of a slate

  • Regular Papers
  • Material Science/Kinetics/Geoscience
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal evolution of a slate rock sample (Berja, Almería, Spain) has been studied. The phase minerals identified in this sample were mica (illite), chlorite (clinochlore) and quartz as major components, with minor microcline, iron oxide and a mixed-layer or interstratified phase (montmorillonite-chlorite). This slate is highly silico-aluminous (48.33 mass% silica, 22.04 mass% alumina), and ca. 20 mass% of other elements, mainly Fe2O3 (8.35 mass%), alkaline-earths and alkaline oxides.

Two main endothermic DTA effects, centered at 640 and 730°C, were observed. The more important contribution of total mass loss (7.15 mass%) was found between 500–900°C, with two DTG peaks detected at 630 and 725°C. All these effects were associated to the dehydroxylation of structural OH groups of 2:1 layered silicates mixed in the slate. The dehydroxylation of the layered silicates evidenced by dilatometry, produced a rapid increase of expansion between 600–800°C. The thermal evolution of the slate upper 800°C indicated the first sintering effects associated to shrinkage, which is also favoured by its low particle size (average 23 μm) and the presence of a liquid or vitreous phase as increasing the heating temperature. The application of thermal diffractometry to the slate sample allowed to study the formation of dehydroxylated crystalline phases from the layered silicates after heating. At 1000°C, β-quartz, dehydroxylated illite, iron oxide, relicts of microcline and the vitreous phase were present in the sample. All these results are interesting to know the thermal behaviour of a complex mineral mixture as identified in the slate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. F. Winkler, Petrogenesis of Metamorphic Rocks, Springer Verlag, 1976.

  2. P. Sousa Santos, Tecnologia de argilas aplicada as argilas brasileiras, Vol. 2, p. 148, Blücher Ltd., Sao Paulo (Brasil) 1975.

    Google Scholar 

  3. D. S. Woods, Current views of development of slaty cleavage, An. Rev. Earth Sci., 2 (1974) 1.

    Article  Google Scholar 

  4. R. L. Bates and J. A. Jackson, Glossary of Geology, Am. Geol. Inst., 1987.

  5. W. A. Deer, R. A. Howie and J. Zussman, An Introduction to the Rock-forming Minerals, Longman, Hong Kong 1992.

    Google Scholar 

  6. Anon, What is slate?, Altivopedras Company, Minas Gerais, Brazil 2002, in www.altivopedras.com.

  7. M. Lombardero and J. M. Quereda, Recursos minerales de España, Textos Universitarios, J. García and J. Martínez, Eds., CSIC, Madrid, Spain 1992, pp. 1118–1150

    Google Scholar 

  8. M. A. Rodríguez, F. Rubio, J. Rubio, M. J. Liso and J. L. Oteo, Bol. Geol. Min., 106 (1995) 437.

    Google Scholar 

  9. M. A. Rodríguez, J. Rubio, F. Rubio, M. J. Liso and J. L. Oteo, Clays Clay Miner., 45 (1997) 670.

    Article  Google Scholar 

  10. T. U. Pritchard, Development of Expanded Slate for Horticultural and Aggregate Use, Eurothen 2000, Lisbon, 19–21 January 2000.

  11. M. T. Vieira, L. Catarino, M. Oliveira, J. Sousa, J. M. Torralba, L. E. G. Cambronero, F. L. González-Mesones and A. Victoria, J. Mater, Process. Technol., 92–93 (1999) 97.

    Article  Google Scholar 

  12. R. Caligaris, N. Quaranta, M. Caligaris and E. Benavides, Bol. Soc. Esp. Ceram. V., 39 (2000) 623.

    CAS  Google Scholar 

  13. M. Regueiro and M. Lombardero, Innovaciones y avances en el sector de las rocas y minerales industriales, Summa S.A., Madrid 1997.

  14. T. S. Valera, A. P. Ribeiro, F. R. Valenzuela-Díaz, A. Yoshiga, W. Ormanji and S. M. Toffoli, Annual Technical Conference-Society of Plastics Engineers, 3 (2002) 3949.

    Google Scholar 

  15. L. E. G. Cambronero, J. M. Ruiz-Román and J. M. Ruiz, Bol. Soc. Esp. Ceram. V., 44 (2005) 368.

    CAS  Google Scholar 

  16. J. Garcia-Guinea, M. Lombardero, B. Roberts and J. Taboada, Trans. Inst. Min. Metall. (Sect. B: Appl. Earth Sci.), 106 (1997) 205.

    Google Scholar 

  17. J. Garcia-Guinea, M. Lombardero, B. Roberts, J. Taboada and A. Peto, Mater. Construcc., 48 (1998) 37.

    Article  CAS  Google Scholar 

  18. J. Garcia-Guinea, V. Cardenas, V. Correcher, A. Delgado, M. Lombardero and J. C. Barros, Bol. Soc. Esp. Ceram. V., 39 (2000) 589.

    CAS  Google Scholar 

  19. B. A. van der Pluijm, N.-C. Ho, D. R. Peacor and R. J. Merriman, Nature, 392 (1998) 348.

    Article  Google Scholar 

  20. M. A. Rodríguez, F. Rubio, J. Rubio, M. J. Liso and J. L. Oteo, Bol. Soc. Esp. Ceram. V., 40 (2001) 101.

    Google Scholar 

  21. E. Garzon, A. Ruiz-Conde and P. J. Sanchez-Soto, Communication presented at VIII Congreso Nacional de Materiales, Valencia 2004.

  22. P. J. Sánchez-Soto, M. C. Jiménez de Haro, L. A. Pérez-Maqueda, I. Varona and J. L. Pérez-Rodríguez, J. Am. Ceram. Soc., 83 (2000) 1649.

    Article  Google Scholar 

  23. G. W. Brindley and G. Brown, Crystal structures of clay minerals and their X-ray identification, Mineralogical Society, London 1980.

    Google Scholar 

  24. S. W. Bailey and J. S. Lister, Clays Clay Miner., 37 (1989) 193.

    Article  CAS  Google Scholar 

  25. D. M. C. MacEwan and A. Ruiz-Amil, Interstratified Clay Minerals, Soil Components, Vol. 2, Inorganic Components, J. E. Gieseking Ed., Springer-Verlag, New York, 1975, pp. 265–334.

    Google Scholar 

  26. A. Ruiz-Amil, F. Aragón, E. Vila and A. Ruiz-Conde, Clay Miner., 27 (1992) 257.

    Article  Google Scholar 

  27. A. Ruiz-Conde, A. Ruiz-Amil, J. L. Pérez-Rodríguez and P. J. Sánchez-Soto, J. Mater. Chem., 6 (1996) 1557.

    Article  CAS  Google Scholar 

  28. A. Ruiz-Conde, E. Garzón and P. J. Sánchez-Soto, in preparation.

  29. A. Justo, J. L. Pérez-Rodríguez and P. J. Sánchez-Soto, J. Thermal. Anal., 40 (1993) 59.

    Article  CAS  Google Scholar 

  30. K. H. Schüller, Process Mineralogy of Ceramic Materials, Ed. W. Baumgart et al., pp. 1–27, Ferdinand Enke, Sttutgart, Germany 1984.

    Google Scholar 

  31. G. W. Brindley and T. S. Chang, Am. Miner., 59 (1974) 152.

    CAS  Google Scholar 

  32. G. W. Brindley and J. Lemaitre, Chemistry of Clays and Clay Minerals A. C. D. Newman Ed., Monograph No. 6, The Mineralogical Society, London 1987, p. 319.

    Google Scholar 

  33. H. Takeda and B. Morosin, Acta Crystall., B31 (1975) 2444.

    CAS  Google Scholar 

  34. S. Guggenheim, Y. H. Chang and A. F. Koster van Groos, Am. Miner., 72 (1987) 537.

    CAS  Google Scholar 

  35. K. J. D. MacKenzie, I. W. M. Brown, C. M. Cardile and R. H. Meinhold, J. Mater. Sci., 22 (1987) 2645.

    Article  CAS  Google Scholar 

  36. E. Murad and U. Wagner, Clay Miner., 31 (1996) 45.

    Article  CAS  Google Scholar 

  37. G. E. Roch, M. E. Smith and S. R. Drachman, Clays Clay Miner., 46 (1998) 694.

    Article  CAS  Google Scholar 

  38. S. G. Barlow and D. A. C. Manning, Br. Ceram. Trans. J., 98 (1999) 122.

    Article  CAS  Google Scholar 

  39. S. W. Bailey, Structures of Layer Silicates, in [23], p. 1.

    Google Scholar 

  40. A. F. Koster van Groos and S. Guggenheim, in CMS Workshop Lectures, Vol. 3, Thermal Analysis in Clay Science, J. W. Stucki, D. L. Bish and F. A. Mumpton eds., The Clay Minerals Society, Boulder, Colorado, 1990, p. 49.

    Google Scholar 

  41. P. Munier and J. Meneret, Bull. Soc. Fr. Ceram., 7 (1950) 6.

    Google Scholar 

  42. G. García Ramos, F. González García, P. J. Sánchez-Soto and M. T. Ruiz, Bol. Soc. Esp. Ceram. V., 24 (1985) 67.

    Google Scholar 

  43. M. S. Tites and Y. Maniatis, Br. Ceram. Trans. J., 74 (1975) 19.

    Google Scholar 

  44. A. W. Norris, D. Taylor and I. Thorpe, Br. Ceram. Trans. J., 78 (1979) 102.

    CAS  Google Scholar 

  45. J. F. Schairer, J. Am. Ceram. Soc., 40 (1957) 215.

    Article  CAS  Google Scholar 

  46. E. F. Osborn and A. Muan Eds., Phase diagrams for ceramists, Plate 407, The American Ceramic Society, Columbus, Ohio 1960.

    Google Scholar 

  47. V. Nastro, D. Vuono, M. Guzzo, G. Nicéforo, I. Bruno and P. De Luca, J. Therm. Anal. Cal., 84 (2006) 181.

    Article  CAS  Google Scholar 

  48. D. D. Eberl and J. Shrodon, Am. Miner., 73 (1988) 1335.

    CAS  Google Scholar 

  49. J. Decleer and W. Viaene, Appl. Clay Sci., 8 (1993) 111.

    Article  CAS  Google Scholar 

  50. A. Muan, J. Am. Ceram. Soc., 40 (1957) 121.

    Article  CAS  Google Scholar 

  51. D. N. Papadopoulou, M. Lalia-Kantouri, N. Kantiranis and J. A. Stratis, J. Therm. Anal. Cal., 84 (2006) 39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Sánchez-Soto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Soto, P.J., Ruiz-Conde, A., Bono, R. et al. Thermal evolution of a slate. J Therm Anal Calorim 90, 133–141 (2007). https://doi.org/10.1007/s10973-007-7751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-7751-2

Keywords

Navigation