Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 2, pp 385–392 | Cite as

Structural and thermal studies on the solid products in the system MnSeO3-SeO2-H2O

  • L. T. VlaevEmail author
  • Mariana P. Tavlieva
Regular papers Material Science/Geosciences


The solubility of MnSeO3-SeO2-H2O system was studied in the temperature region 25–300°C. The compounds of the three-component system were identified by the Schreinemaker’s method. The phase diagram of manganese(II) selenites was drawn and the crystallization fields for the different phases were determined. Depending on the conditions for hydrothermal synthesis, MnSeO3·H2O, MnSeO3·3/4H2O, MnSeO3·l/3H2O and MnSe2O5 were obtained. The different phases were proven and characterized by chemical, powder X-ray diffraction and thermal analyses, as well as IR spectroscopy. The kinetics of dehydration and decomposition of MnSeO3·H2O was studied under non-isothermal heating. Based on 4 calculation procedures and 27 kinetic equations, the values of activation energy and pre-exponential factor in Arrhenius equation were calculated for both processes.


hydrothermal synthesis IR spectroscopy manganese(II) selenites non-isothermal kinetic powder X-ray diffraction solubility diagrams thermal analyses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Mandarino, Eur. J. Mineral., 6 (1994) 337.Google Scholar
  2. 2.
    V. G. Chukhlantzev and G. P. Tomashevskii, Zh. Anal. Khim., 12 (1957) 296.Google Scholar
  3. 3.
    E. A. Buketov, Vest. An KazSSR, Ser. Khim., 21 (1965) 30.Google Scholar
  4. 4.
    Z. L. Lestinskaya and N. M. Selivanova, Izv. VUZ, Khim. Khim. Tekhnol., 4 (1966) 523.Google Scholar
  5. 5.
    O. J. Lieder and G. Gattow, Naturwissenschaften, 54 (1967) 443.CrossRefGoogle Scholar
  6. 6.
    V. N. Makatun, R. Ya. Melnikova and T. I. Barannikova, Koord. Khim., 1 (1975) 920.Google Scholar
  7. 7.
    K. Kohn, S. I. Akimoto, K. Inoue, K. Asai and O. Horie, J. Phys. Soc. Jpn., 38 (1975) 587.CrossRefGoogle Scholar
  8. 8.
    M. Koskenlinna, L. Ninisto and J. Valkonen, Acta Chem. Scand. A, 30 (1976) 836.Google Scholar
  9. 9.
    K. Kohn, K. Inoue, O. Horie and S. I. Akimoto, J. Solid State Chem., 18 (1976) 27.CrossRefGoogle Scholar
  10. 10.
    M. Koskenlinna and J. Valkonen, Acta Chem. Scand. A, 31 (1977) 752.CrossRefGoogle Scholar
  11. 11.
    R. Ya. Melnikova, V. N. Makatun, V. V. Pechkovskii, A. K. Potapovich and V. Z. Drapkia, Zh. Neorg. Khim., 23 (1978) 691.Google Scholar
  12. 12.
    B. L. Khandelwal and S. P. Mallela, Thermochim. Acta, 33 (1979) 355.CrossRefGoogle Scholar
  13. 13.
    G. Giester and M. Wildner, J. Solid State Chem., 91 (1991) 370.CrossRefGoogle Scholar
  14. 14.
    J. Bonvoisin, J. Galy and J.-C. Trombe, J. Solid State Chem., 107 (1993) 171.CrossRefGoogle Scholar
  15. 15.
    B. Engelen, U. Baumer, B. Hermann, H. Miller and K. Unterderweide, Z. Anorg. Allg. Chem., 622 (1996) 1886.CrossRefGoogle Scholar
  16. 16.
    S. Sharamasarkar, K. J. Reddy and G. F. Vance, Chem. Geol., 132 (1996) 165.CrossRefGoogle Scholar
  17. 17.
    A. B. Gopinath and S. Devanarayanan, Int. J. Modern Phys. B, 13 (1999) 2645.CrossRefGoogle Scholar
  18. 18.
    V. P. Verma, Thermochim. Acta, 327 (1999) 63.CrossRefGoogle Scholar
  19. 19.
    A. Larranga, J. L. Pizarro, J. L. Mesa, M. I. Arriortua and T. Rajo, Bol. Soc. Esp. Miner., 24-A (2001) 17.Google Scholar
  20. 20.
    Q. Peng, Y. Dong, Z. Deng, H. Kou, S. Gao and Y. Li, J. Phys. Chem. B, 106 (2002) 9261.CrossRefGoogle Scholar
  21. 21.
    A. Larranaga, J. L. Mesa, J. L. Pizarro, R. Olazcuaga, M. I. Arriortua and T. Rajo, J. Chem. Soc., Dalton Trans, 18 (2002) 3447.CrossRefGoogle Scholar
  22. 22.
    A. Larranaga, J. L. Mesa, J. L. Pizarro, L. Lezama, J. P. Chapman, M. I. Arriortua and T. Rajo, J. Chem. Soc., Dalton Trans., 21 (2005) 1727.Google Scholar
  23. 23.
    A. Larranaga, J. L. Mesa, J. L. Pizarro, A. Pena, R. Olazcuaga, M. I. Arriortua and T. Rajo, J. Solid State Chem., 178 (2005) 3686.CrossRefGoogle Scholar
  24. 24.
    A. Kotarski, Chem. Anal., 10 (1965) 161.Google Scholar
  25. 25.
    R. Pribil, Complexonometry (in Bulgarian), Thehnika, Sofia 1980.Google Scholar
  26. 26.
    M. H. Karapetyanz, Chemical Thermodynamics (in Russian), Moscow, Khimiya 1975, pp. 315–318.Google Scholar
  27. 27.
    L. T. Vlaev, V. G. Georgieva and S. D. Genieva, J. Therm. Anal. Cal., OnlineFirst: DOI: 10.1007/s10973-005-7149-y.Google Scholar
  28. 28.
    A. W. Coats and J. P. Redfern, Nature (London), 201 (1964) 68.CrossRefGoogle Scholar
  29. 29.
    P. M. Madhusudanan, K. Krishnan and K. N. Ninan, Thermochim. Acta, 221 (1993) 13.CrossRefGoogle Scholar
  30. 30.
    W. Tang, Y. Liu, H. Zhang and C. Wang, Thermochim. Acta, 408 (2003) 39.CrossRefGoogle Scholar
  31. 31.
    T. Wanjun, L. Yuwen, Z. Hen, W. Zhiyong and W. Cunxin, J. Therm. Anal. Cal., 74 (2003) 309.CrossRefGoogle Scholar
  32. 32.
    J. Šesták, Thermodynamical properties of solids, Academia Prague, 1984.Google Scholar
  33. 33.
    J. M. Criado, L. A. Pérez-Maqueda and P. E. Sánchez-Jiménez, J. Therm. Anal. Cal., 82 (2005) 671.CrossRefGoogle Scholar
  34. 34.
    G. G. Gospodinov, L. M. Sukova and K. I. Petrov, Zh. Neorg. Khim., 33 (1988) 1970.Google Scholar
  35. 35.
    V. P. Verma and A. Khushu, J. Thermal Anal., 35 (1989) 1157.CrossRefGoogle Scholar
  36. 36.
    M. Ebert, Z. Micka and I. Pekova, Chem. Zvesti, 36 (1982) 169.Google Scholar
  37. 37.
    M. Ebert, Z. Micka and I. Pekova, Coll. Czech. Chem. Comm., 47 (1982) 2069.Google Scholar
  38. 38.
    L. T. Vlaev, S. D. Genieva and G. G. Gospodinov, J. Therm. Anal. Cal., 81 (2005) 469.CrossRefGoogle Scholar
  39. 39.
    L. T. Vlaev, S. D. Genieva and V. G. Georgieva, J. Therm. Anal. Cal., 86 (2006) 449.CrossRefGoogle Scholar
  40. 40.
    H. F. Cordes, J. Phys. Chem., 72 (1968) 2185.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Department of Physical ChemistryAssen Zlatarov UniversityBourgasBulgaria

Personalised recommendations