DSC study of linolenic acid autoxidation inhibited by BHT, dehydrozingerone and olivetol

Abstract

Non-isothermal oxidation of linolenic acid (LNA) in bulk phase was monitored by differential scanning calorimetry. The kinetic parameters E a, Z and k (activation energies, pre-exponential factors, and rate constants, respectively) were calculated by Ozawa-Flynn-Wall method for the first detectable exothermic effect of uninhibited LNA oxidation. The kinetic parameters were also calculated for LNA oxidation inhibited by 2,6-di-tert-butyl-4-methylphenol (BHT), and two natural compounds, 1,3-dihydroxy-5-pentylbenzene (olivetol), and 4-(4’-hydroxy-3’-methoxyphenyl)-3-buten-2-one (DHZ, dehydrozingerone) at various concentrations.

For oxidation processes at 25, 90 and 180°C the plots of logk values vs. concentration of phenolic compounds indicated that optimal concentration of inhibitor determined for one particular temperature cannot be extrapolated to other temperatures.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Food Lipids — Chemistry, Nutrition and Biotechnology, C. C. Akoh and D. B. Min, Eds, Marcel Dekker Inc., New York 1998.

    Google Scholar 

  2. 2

    G. Litwinienko, Analysis of lipid oxidation by Differential Scanning Calorimetry in Analysis of Lipid Oxidation, A. Kamal-Eldin and J. Pokorny, Eds, JAOCS Press, Champaign, IL, 2005, p. 152.

    Google Scholar 

  3. 3

    T. Ozawa, J. Thermal Anal., 2 (1970) 301.

    Article  CAS  Google Scholar 

  4. 4

    J. H. Flynn and L. A. Wall, J. Polym. Sci. B, Polym. Lett., 4 (1966) 323.

    Article  CAS  Google Scholar 

  5. 5

    M. Ulkowski, M. Musialik and G. Litwinienko, J. Agric. Food Chem., 53 (2005) 9073.

    Article  CAS  Google Scholar 

  6. 6

    G. Litwinienko, J. Therm. Anal. Cal., 65 (2001) 639.

    Article  CAS  Google Scholar 

  7. 7

    P. Šimon and L’. Kolman, J. Therm. Anal. Cal., 64 (2001) 813.

    Article  Google Scholar 

  8. 8

    P. Šimon, J. Therm. Anal. Cal., 84 (2006) 263.

    Article  CAS  Google Scholar 

  9. 9

    Y. Asahina and M. Yasue, Berichte Dtsch. Chem. Ges., 70 (1937) 206.

    Article  Google Scholar 

  10. 10

    A. Kozubek and J. H. P. Tyman, Chem. Rev., 99 (1999) 1.

    Article  CAS  Google Scholar 

  11. 11

    A. Kamal-Eldin, A. Pouru, C. Eliasson and P. Aman, J. Sci. Food Agric., 81 (2000) 353.

    Article  Google Scholar 

  12. 12

    P.-C. Kuo, A. G. Damu, C.-Y. Cherng, Jye-Fu Jeng, C.-M. Teng, E.-J. Lee and T.-S. Wu, Arch. Pharm. Res., 28 (2005) 518.

    CAS  Article  Google Scholar 

  13. 13

    D. V. Rajakumar and M. N. A. Rao, Biochem. Pharmacol., 46 (1993) 2067.

    Article  CAS  Google Scholar 

  14. 14

    K. I. Priyadarsini, S. N. Guha and M. N. A. Rao, Free Rad. Biol. Med., 24 (1998) 933.

    Article  CAS  Google Scholar 

  15. 15

    K. I. Priyadarsini, T. P. A. Devasagayam, M. N. A. Rao and S. N. Guha, Radiat. Phys. Chem., 54 (1999) 551.

    Article  CAS  Google Scholar 

  16. 16

    G. Litwinienko and K. U. Ingold, J. Org. Chem., 69 (2004) 5888.

    Article  CAS  Google Scholar 

  17. 17

    G. Elias and M.N.A. Rao, Eur. J. Med. Chem., 23 (1988) 379.

    Article  CAS  Google Scholar 

  18. 18

    G. Litwinienko, A. Daniluk and T. Kasprzycka-Guttman, Ind. Eng. Chem. Res., 39 (2000) 7.

    Article  CAS  Google Scholar 

  19. 19

    G. Litwinienko and T. Kasprzycka-Guttman, Ind. Eng. Chem. Res., 39 (2000) 13.

    Article  CAS  Google Scholar 

  20. 20

    B. Kowalski, J. Thermal Anal., 34 (1988) 1321.

    Article  CAS  Google Scholar 

  21. 21

    G. Litwinienko, J. Therm. Anal. Cal., 165 (2001) 639.

    Article  Google Scholar 

  22. 22

    G. Litwinienko, E. Megiel and M. Wojnicz, Organic Lett., 4 (2002) 2425.

    Article  CAS  Google Scholar 

  23. 23

    G. Litwinienko, T. Kasprzycka-Guttman and M. Studzinski, Thermochim. Acta, 307 (1997) 97.

    Article  CAS  Google Scholar 

  24. 24

    M. I. de Heer, P. Mulder, H.-G. Korth, K. U. Ingold and J. Lusztyk, J. Am. Chem. Soc., 122 (2000) 2355.

    Article  CAS  Google Scholar 

  25. 25

    G. Litwinienko, T. Kasprzycka-Guttman and D. Jamanek, Thermochim. Acta, 331 (1999) 79.

    Article  CAS  Google Scholar 

  26. 26

    P. Šimon, L’. Kolman, I. Niklova and Š. Schmidt, J. Am. Oil Chem. Soc., 77 (2000) 639.

    Article  Google Scholar 

  27. 27

    J. Polavka, J. Paligová, J. Cvengroš and P. Šimon, J. Am. Oil Chem. Soc., 82 (2005) 519.

    Article  CAS  Google Scholar 

  28. 28

    L. Woo, A. R., Khare, C. L. Sandford, M. T. K. Ling and S. Y. Ding, J. Therm. Anal. Cal., 64 (2001) 539.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Litwinienko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Musialik, M., Litwinienko, G. DSC study of linolenic acid autoxidation inhibited by BHT, dehydrozingerone and olivetol. J Therm Anal Calorim 88, 781–785 (2007). https://doi.org/10.1007/s10973-006-8507-0

Download citation

Keywords

  • antioxidants
  • autoxidation
  • BHT
  • dehydrozingerone
  • DSC
  • kinetics
  • olivetol
  • thermal analysis