Skip to main content
Log in

Thermal analysis of flammability

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermal analysis method that separately reproduces the gas and condensed phase processes of flaming combustion in a single laboratory test is described. Anaerobic pyrolysis of solid plastics at a constant heating rate and complete thermal oxidation (nonflaming combustion) of the evolved gases provides the rate, amount, and temperatures over which heat is released by a burning solid. A physical basis for the method, the test procedure, and the relationship of flammability parameters to fire response and flame resistance of plastics are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Lyon, Fire Materials, 24 (2000) 179.

    Article  CAS  Google Scholar 

  2. R. E. Lyon, R. N. Walters and S. I. Stoliarov, ASTM Inter., 3 (2006) 1.

    Google Scholar 

  3. V. Babrauskas, V. Babrauskas and S. Grayson, Eds., Elsevier Applied Science, pp. 207–223, 1992.

  4. W. Thornton, Philos. Mag. J. Sci., 33 (1917) 196.

    Article  CAS  Google Scholar 

  5. C. Huggett, Fire Mater. 4 (1980) 61.

    Article  CAS  Google Scholar 

  6. M. L. Janssens and W. J. Parker, Oxygen Consumption Calorimetry, Heat Release in Fires, V. Babrauskas and S. Grayson, eds., Elsevier Applied Science, pp. 31–59, 1992.

  7. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter, ASTM E 1354, American Society for Testing and Materials, West Conshohocken, PA.

  8. Standard Test Method for Measurement of Synthetic Polymer Material Flammability Using a Fire Propagation Apparatus (FPA), ASTM E 2058, American Society for Testing and Materials, West Conshohocken, PA.

  9. R. E. Lyon and R. N. Walters, J. Anal. Appl. Pyrol., 71 (2004) 27.

    Article  CAS  Google Scholar 

  10. W. M. Heffington, G. E. Parks, K. G. P. Sulzmann and S. S. Penner, The Combustion Institute, 1976, pp. 997–1010.

  11. S. M. Reshetnikov and I. S. Reshetnikov, Polym. Degrad. Stab., 64 (1999) 379.

    Article  CAS  Google Scholar 

  12. P. R. Westmoreland, T. Inguilzian and K. Rotem, Thermochm. Acta, 67 (2001) 401.

    Article  Google Scholar 

  13. R. E. Lyon, Ed. C. A. Harper, McGraw-Hill, NY, 2004, Chapter 3, pp. 1–51.

    Google Scholar 

  14. R. N. Walters and R. E. Lyon, Flammability of Automotive Plastics, Presented at the Society of Automotive Engineers (SAE) World Congress & Exposition. Detroit, MI, April 3–6, 2006.

  15. R. E. Lyon and M. L. Janssens, Polymer Flammability, Encyclopedia of Polymer Science Engineering (on-line edition), John Wiley & Sons, New York, NY, October 2005.

    Google Scholar 

  16. R. E. Lyon, Piloted Ignition of Combustible Solids, Society for the Advancement of Materials and Process Engineering (SAMPE) International Conference, Long Beach, CA, May 2–5, 2005.

  17. V. Babrauskas and R. D. Peacock, Fire Safety J., 18 (1992) 255.

    Article  CAS  Google Scholar 

  18. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products, ASTM D 906, American Society for Testing and Materials, West Conshohocken, PA.

  19. Title 14 of the Code of Federal Regulations (CFR), Chapter 1, Federal Aviation Administration, Department of Transportation, Part 25, Airworthiness Standards: Transport Category Airplanes.

  20. Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index), ASTM D 2863, American Society for Testing and Materials, West Conshohocken, PA.

  21. Flammability of Plastic Materials, UL 94 Section 2 (Horizontal: HB) and Section 3 (Vertical: V-0/1/2), Underwriters Laboratories Inc., Northbrook, IL, 1991.

  22. R.E. Lyon, Fire & Flammability, Fire Risk & Hazard Assessment Research Symposium, Fire Protection Research Foundation, Baltimore, MD, July 9–11, 2003, pp. 22–32.

  23. V. Babrauskas, Ignition Handbook, Fire Science Publishers, Issaquah, WA, 2003.

    Google Scholar 

  24. A. Tewarson, J. L. Lee and R. F. Pion, The Influence of Oxygen Concentration on Fuel Parameters for Fire Modeling, Eighteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 563–570, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Lyon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyon, R.E., Walters, R.N. & Stoliarov, S.I. Thermal analysis of flammability. J Therm Anal Calorim 89, 441–448 (2007). https://doi.org/10.1007/s10973-006-8257-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8257-z

Keywords

Navigation