Skip to main content
Log in

Effect of grinding on thermal reactivity of ceramic clay minerals

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of grinding on thermal behavior of pyrophyllite and talc as commonly used ceramic clay minerals was investigated by DTA, TG, emanation thermal analysis (ETA), B.E.T. surface area (s.a.) measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM).

A vibratory mill was used in this study, grinding time was 5 min. It was found that the grinding caused an increase in surface area and a grain size reduction of the samples. From TG and DTA results it followed that grinding caused a decrease of the temperature at which the structure bound OH groups released. The formation of high temperature phases was enhanced with the ground samples. For the ground talc sample the crystallization of non-crystalline phase into orthorhombic enstatite was observed in the range of 800°C. For ground pyrophyllite a certain agglomeration of grains was observed in the range above 950°C. Moreover, for both clays the ETA characterized a closing up of subsurface irregularities caused by grinding as a decrease of the emanation rate in the range 250–400°C. The comparison of thermal analysis results with the results of other methods made it possible to better understand the effect of grinding on the ceramic clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JL Pérez-Rodriguez et al. (2003) Applied Study of Cultural Heritage C.S.I.C. Madrid 425

    Google Scholar 

  2. JL Pérez-Rodríguez L Madrid Sanchez del Villar PJ Sánchez-Soto (1988) Clay Miner. 23 399 Occurrence Handle10.1180/claymin.1988.023.4.07

    Article  Google Scholar 

  3. PJ Sánchez-Soto M Del Carmen Jimenez de Haro LA Perez-Maqueda I Varona JL Pérez-Rodriguez (2000) J. Am. Ceram. Soc. 83 1649 Occurrence Handle10.1111/j.1151-2916.2000.tb01444.x

    Article  Google Scholar 

  4. PJ Sánchez-Soto A Wiewiora MA Aviles A Justo LA Perez-Maqueda JL Pérez-Rodriguez P Bylina (1997) Appl. Clay Sci. 12 297 Occurrence Handle10.1016/S0169-1317(97)00013-6

    Article  Google Scholar 

  5. A Wiewiora PJ Sánchez-Soto MA Aviles A Justo JL Pérez-Rodríguez (1993) Appl. Clay Sci. 8 261 Occurrence Handle10.1016/0169-1317(93)90008-O Occurrence Handle1:CAS:528:DyaK2cXhtlymu7s%3D

    Article  CAS  Google Scholar 

  6. A Wiewiora PJ Sánchez-Soto MA Aviles A Justo L Pérez Maqueda JL Pérez-Rodríguez (1996) Int. J. Soc. Mat. Eng. 4 48 Occurrence Handle1:CAS:528:DyaK28Xkt1Wgsrc%3D

    CAS  Google Scholar 

  7. ET Stepkowska JL Pérez-Rodríguez MC Jiménez de Haro PJ Sánchez-Soto C Maqueda (2001) Clay Miner. 36 105 Occurrence Handle10.1180/000985501547385 Occurrence Handle1:CAS:528:DC%2BD3MXit1Onur0%3D

    Article  CAS  Google Scholar 

  8. V. Balek, J. L. Pérez-Rodríguez, L. A. Pérez-Maqueda, J. Subrt and J. Poyato, J. Therm. Anal. Cal. OnlineFirst, DOI : 10.1007/s10973-005-7462-5.

  9. V Balek (1978) Thermochim. Acta 22 1 Occurrence Handle10.1016/0040-6031(78)80001-X Occurrence Handle1:CAS:528:DyaE1cXkt1OktA%3D%3D

    Article  CAS  Google Scholar 

  10. V Balek ME Brown et al. (1998) Less common techniques, Handbook on Thermal Analysis and Calorimetry, Vol. 1 Chapt. 9 Elsevier Science B. V. Amsterdam 445

    Google Scholar 

  11. LA Pérez-Maqueda V Balek J Poyato JL Pérez-Rodriquez J Subrt IM Bountsewa IN Beckman Z Malek (2003) J. Therm. Anal. Cal. 71 715 Occurrence Handle10.1023/A:1023353521235

    Article  Google Scholar 

  12. V Balek J Tölgyessy et al. (1984) Emanation thermal analysis and other radiometric emanation methods, in Wilson and Wilson’s Comprehensive Analytical Chemistry, Part XIIC Elsevier Science Publishers Amsterdam 304

    Google Scholar 

  13. JF Ziegler JP Biersack U Littmark et al. (1985) The Stopping and Range of Ions in Solids Pergamon Press New York

    Google Scholar 

  14. LA Pérez-Maqueda JM Criado C Real V Balek J Šubrt (2002) J. Eur. Ceram. Soc. 22 2277 Occurrence Handle10.1016/S0955-2219(02)00013-4

    Article  Google Scholar 

  15. NK Labhsetwar V Balek S Rayalu T Terasaka A Yamazaki J Šubrt H Haneda T Mitsuhashi (2005) J. Therm. Anal. Cal. 80 67 Occurrence Handle10.1007/s10973-005-0712-8 Occurrence Handle1:CAS:528:DC%2BD2MXks1Cjtb8%3D

    Article  CAS  Google Scholar 

  16. HP Klug LE Alexander et al. (1974) X-ray diffraction procedures, 2nd Edition J. Wiley and Sons New York 687

    Google Scholar 

  17. PJ Sánchez-Soto JL Pérez-Rodríguez I Sobrados J Sanz (1997) Chem. Mater. 9 677 Occurrence Handle10.1021/cm960224+

    Article  Google Scholar 

  18. EF Aglietti JM Porto Lopez (1992) Mater. Res. Bull. 27 1205 Occurrence Handle10.1016/0025-5408(92)90228-R Occurrence Handle1:CAS:528:DyaK38XmsFKlurg%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Balek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balek, V., Pérez-Maqueda, L.A., Poyato, J. et al. Effect of grinding on thermal reactivity of ceramic clay minerals. J Therm Anal Calorim 88, 87–91 (2007). https://doi.org/10.1007/s10973-006-8093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8093-1

Keywords

Navigation