Skip to main content
Log in

Influence of barium source on the characteristics of sol-precipitated BaTiO3 powders and related ceramics

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to obtain pure and fine BaTiO3 powders with controlled morphology, sol-precipitation methods involving the use of titanium iso-propoxide and of two different barium sources, i.e. barium nitrate and barium acetate, were proposed in this work. The thermal behaviour of the synthesized gels and the X-ray diffraction data obtained for the oxide powders pointed out that, by using Ba(NO3)2 as barium source, the decomposition process was completed at lower temperature (750°C) and was accompanied by a more pronounced tendency to obtain a single phase BaTiO3 composition, by comparison with the synthesis where barium acetate was used as raw material (1100°C). Scanning electron microscopy investigations emphasized the effect of the nature of barium source and synthesis conditions on the morphology of the oxide powders, as well as on the microstructure of the related ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Schlag HF Eicke (1994) Solid State Commun. 91 883 Occurrence Handle10.1016/0038-1098(94)90007-8 Occurrence Handle1:CAS:528:DyaK2cXms1yhurc%3D

    Article  CAS  Google Scholar 

  2. HA Sauer JR Fisher (1960) J. Am. Ceram. Soc. 43 297 Occurrence Handle10.1111/j.1151-2916.1960.tb13657.x Occurrence Handle1:CAS:528:DyaF3cXovVelsg%3D%3D

    Article  CAS  Google Scholar 

  3. W Heywang (1971) J. Mater. Sci. 6 1214 Occurrence Handle10.1007/BF00550094 Occurrence Handle1:CAS:528:DyaE3MXlsVGhtbc%3D

    Article  CAS  Google Scholar 

  4. S Otta SD Bhattamisra (1994) J. Therm. Anal. Cal. 41 419 Occurrence Handle1:CAS:528:DyaK2cXjtVynurk%3D

    CAS  Google Scholar 

  5. M Stockenhuber H Mayer JA Lercher (1995) J. Am. Ceram. Soc. 76 1185 Occurrence Handle10.1111/j.1151-2916.1993.tb03738.x

    Article  Google Scholar 

  6. HS Potdar SB Deshpande SK Date (1999) Mater. Chem. Phys. 58 121 Occurrence Handle10.1016/S0254-0584(98)00262-4 Occurrence Handle1:CAS:528:DyaK1MXhslarsrc%3D

    Article  CAS  Google Scholar 

  7. W-S Cho (1998) J. Phys. Chem. Solids 59 659 Occurrence Handle10.1016/S0022-3697(97)00227-8 Occurrence Handle1:CAS:528:DyaK1cXjtFanurg%3D

    Article  CAS  Google Scholar 

  8. P Durán F Capel J Tartaj C Moure (2001) J. Mater. Res. 16 197

    Google Scholar 

  9. J-D Tsay T-T Fang TA Gubiotti JY Ying (1998) J. Mater. Sci. 33 3721 Occurrence Handle10.1023/A:1004636219542 Occurrence Handle1:CAS:528:DyaK1cXmvFyit7w%3D

    Article  CAS  Google Scholar 

  10. JO Eckert Jr CC Hung-Houston BL Gersten MM Lencka RE Riman (1996) J. Am. Ceram. Soc. 79 2929 Occurrence Handle10.1111/j.1151-2916.1996.tb08728.x

    Article  Google Scholar 

  11. R Vivekanandan TRN Kutty (1989) Powder Technol. 57 181 Occurrence Handle10.1016/0032-5910(89)80074-9 Occurrence Handle1:CAS:528:DyaL1MXitlKisLg%3D

    Article  CAS  Google Scholar 

  12. SW Lu BI Lee ZL Wang WD Samuels (2000) J. Cryst. Growth 219 269 Occurrence Handle10.1016/S0022-0248(00)00619-9

    Article  Google Scholar 

  13. PP Phule SH Risbud (1988) Adv. Ceram. Mater. 3 183 Occurrence Handle1:CAS:528:DyaL1cXhsFGhsr8%3D

    CAS  Google Scholar 

  14. G Pfaff (1992) J. Mater. Chem. 2 591 Occurrence Handle10.1039/jm9920200591 Occurrence Handle1:CAS:528:DyaK38XltVarsL4%3D

    Article  CAS  Google Scholar 

  15. Ch Lemoine B Gilbert B Michaux J-P Pirard AJ Lecloux (1994) J. Non-Cryst. Solids 175 1 Occurrence Handle10.1016/0022-3093(94)90309-3 Occurrence Handle1:CAS:528:DyaK2cXms1WlsLo%3D

    Article  CAS  Google Scholar 

  16. C Zhixiong Z Fangaqiao L Meidong W Guoan P Xiangsheng (1991) Ferroelectrics 123 61

    Google Scholar 

  17. DP Birnie III MH Jilavi T Krajevski R Nab (1998) J. Sol-Gel Sci. Technol. 13 855 Occurrence Handle10.1023/A:1008654703057

    Article  Google Scholar 

  18. T Yogo K-I Kikuta S Yamada S-I Hirano (1994) J. Sol-Gel Sci. Technol. 2 175 Occurrence Handle10.1007/BF00486236 Occurrence Handle1:CAS:528:DyaK2MXit1agtr4%3D

    Article  CAS  Google Scholar 

  19. OG Dediu M Crişan Gh Aldica M Zaharescu (2004) Rev. Roum. Chim. 49 811 Occurrence Handle1:CAS:528:DC%2BD2MXisVSjtrg%3D

    CAS  Google Scholar 

  20. KS Mazdiyasni RT Dolloff JS Smith (1969) J. Am. Ceram. Soc. 52 523 Occurrence Handle10.1111/j.1151-2916.1969.tb09157.x Occurrence Handle1:CAS:528:DyaF1MXltFKjurs%3D

    Article  CAS  Google Scholar 

  21. HP Beck W Eiser R Haberkorn (2001) J. Eur. Ceram. Soc. 21 687 Occurrence Handle10.1016/S0955-2219(00)00270-3 Occurrence Handle1:CAS:528:DC%2BD3MXislajt78%3D

    Article  CAS  Google Scholar 

  22. JM Wilson (1995) Am. Ceram. Soc. Bull. 74 106 Occurrence Handle1:CAS:528:DyaK2MXmtFChs7g%3D

    CAS  Google Scholar 

  23. X Li W Shih (1997) J. Am. Ceram. Soc. 80 2844 Occurrence Handle10.1111/j.1151-2916.1997.tb03202.x Occurrence Handle1:CAS:528:DyaK2sXntF2jsbY%3D

    Article  CAS  Google Scholar 

  24. S Aoyagi Y Kuroiwa A Sawada H Kawaji T Atake (2005) J. Therm. Anal. Cal. 81 627 Occurrence Handle10.1007/s10973-005-0834-z Occurrence Handle1:CAS:528:DC%2BD2MXpvVajtrk%3D

    Article  CAS  Google Scholar 

  25. NA Pertsev AG Zembilgotov AK Tagantsev (1998) Phys. Rev. Lett. 80 1988 Occurrence Handle10.1103/PhysRevLett.80.1988 Occurrence Handle1:CAS:528:DyaK1cXhsFSnsLg%3D

    Article  CAS  Google Scholar 

  26. M Yashima T Hoshina D Ishimura S Kobayashi W Nakamura T Tsurumi S Wada (2005) J. Appl. Phys. 98 014313-1 Occurrence Handle10.1063/1.1935132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelina Ianculescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ianculescu, A., Brăileanu, A., Crişan, M. et al. Influence of barium source on the characteristics of sol-precipitated BaTiO3 powders and related ceramics. J Therm Anal Calorim 88, 251–260 (2007). https://doi.org/10.1007/s10973-006-8083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8083-3

Keywords

Navigation