Skip to main content
Log in

Obtaining of Ni0.65Zn0.35Fe2O4/SiO2 nanocomposites by thermal decomposition of complex compounds embedded in silica matrix

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy.

The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D Sen P Deb S Mazumader A Basumallik (2000) Mater. Res. Bull. 35 1243 Occurrence Handle10.1016/S0025-5408(00)00334-2

    Article  Google Scholar 

  2. JH Paterson R Devine ADR Phelps (1999) J. Magn. Magn. Mater. 196 394 Occurrence Handle10.1016/S0304-8853(98)00772-0

    Article  Google Scholar 

  3. R Mathur M Parihar SR Vadera N Kumar (1998) J. Magn. Soc. 22 273

    Google Scholar 

  4. A Chatterjee D Das D Chakravorty K Choudhury (1990) Appl. Phys. Lett. 57 1360 Occurrence Handle10.1063/1.103436 Occurrence Handle1:CAS:528:DyaK3cXmtVSls70%3D

    Article  CAS  Google Scholar 

  5. KH Wu YC Chang GP Wang (2004) J. Magn. Magn. Mater. 269 150 Occurrence Handle10.1016/S0304-8853(03)00585-7 Occurrence Handle1:CAS:528:DC%2BD3sXpvFeku7c%3D

    Article  CAS  Google Scholar 

  6. KH Wu CH Yu YC Chang DN Horng (2004) J. Solid State Chem. 177 4119 Occurrence Handle10.1016/j.jssc.2004.07.056 Occurrence Handle1:CAS:528:DC%2BD2cXpslKlsLo%3D

    Article  CAS  Google Scholar 

  7. KH Wu YC Chang HB Chen CC Yang DN Horng (2004) J. Magn. Magn. Mater. 278 156 Occurrence Handle10.1016/j.jmmm.2003.12.331 Occurrence Handle1:CAS:528:DC%2BD2cXksFOntLY%3D

    Article  CAS  Google Scholar 

  8. JB da Silva NDS Mohallem (2001) J. Magn. Magn. Mater. 226–230 1393 Occurrence Handle10.1016/S0304-8853(00)00956-2

    Article  Google Scholar 

  9. RD Shull JJ Ritter LJ Swarlzendruber (1991) J. Appl. Phys. 69 5144 Occurrence Handle10.1063/1.348104 Occurrence Handle1:CAS:528:DyaK3MXksVSmtLY%3D

    Article  CAS  Google Scholar 

  10. X He Q Zhang Z Ling (2003) Mater. Lett. 57 3031 Occurrence Handle10.1016/S0167-577X(02)01426-X Occurrence Handle1:CAS:528:DC%2BD3sXktVOlu7s%3D

    Article  CAS  Google Scholar 

  11. KH Wu TH Ting MC Li WD Ho (2006) J. Magn. Magn. Mater. 298 25 Occurrence Handle10.1016/j.jmmm.2005.03.008 Occurrence Handle1:CAS:528:DC%2BD2MXht1agsL%2FL

    Article  CAS  Google Scholar 

  12. C Caizer (2003) J. Phys.: Condens. Mater. 15 765 Occurrence Handle10.1088/0953-8984/15/6/303 Occurrence Handle1:CAS:528:DC%2BD3sXitlKktb0%3D

    Article  CAS  Google Scholar 

  13. M Ştefanescu C Caizer C Muntean M Stoia M Bîrzescu (2000) Chem. Bull. ‘Politehnica’ Univ. (Timişoara) 45 30

    Google Scholar 

  14. C Caizer M Stefanescu (2002) J. Phys. D: Appl. Phys. 35 3035 Occurrence Handle10.1088/0022-3727/35/23/301 Occurrence Handle1:CAS:528:DC%2BD3sXht1Khug%3D%3D

    Article  CAS  Google Scholar 

  15. M Stefanescu C Caizer M Stoia O Stefanescu (2006) Acta Mater. 54 1248 Occurrence Handle10.1016/j.actamat.2005.10.051 Occurrence Handle1:CAS:528:DC%2BD28Xht1Ghsrc%3D

    Article  CAS  Google Scholar 

  16. M. Stefanescu, M. Stoia and O. Stefanescu, J. Sol-Gel Sci. Technol., (2007), in press.

  17. RFS Lenza WL Vasconcelos (2003) J. Non-Cryst. Solids 330 216 Occurrence Handle10.1016/j.jnoncrysol.2003.07.001 Occurrence Handle1:CAS:528:DC%2BD3sXos1ansrg%3D

    Article  CAS  Google Scholar 

  18. R Prasad Sulaxna A Kumar (2005) J. Therm. Anal. Cal. 81 441 Occurrence Handle10.1007/s10973-005-0804-5 Occurrence Handle1:CAS:528:DC%2BD2MXnslyqtr0%3D

    Article  CAS  Google Scholar 

  19. H. Fuess, O. Ballet and W. Lottermoser, Minerals, S. Ghose, I. M. D. Coey and E. Salje, Eds, Berlin 1988.

  20. M Cococcioni AD Corso S Gironcoli (2003) Phys. Rev. 67 94106 Occurrence Handle10.1103/PhysRevB.67.094106 Occurrence Handle1:CAS:528:DC%2BD3sXis1yltbs%3D

    Article  CAS  Google Scholar 

  21. AM Malsbury C Greaves (1987) J. Solid State Chem. 71 418 Occurrence Handle10.1016/0022-4596(87)90250-7 Occurrence Handle1:CAS:528:DyaL1cXhtVCgs7k%3D

    Article  CAS  Google Scholar 

  22. HP Klug LE Alexander et al. (1974) X-ray Diffraction Procedure Wiley New York

    Google Scholar 

  23. J Smit HPJ Wijin et al. (1961) Les ferrites Bibl. Tech. Philips Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Stoia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoia, M., Caizer, C., Stefanescu, M. et al. Obtaining of Ni0.65Zn0.35Fe2O4/SiO2 nanocomposites by thermal decomposition of complex compounds embedded in silica matrix. J Therm Anal Calorim 88, 193–200 (2007). https://doi.org/10.1007/s10973-006-8004-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8004-5

Keywords

Navigation