Skip to main content
Log in

Influence of aluminium precursor on physico-chemical properties of aluminium hydroxides and oxides

Part III. Al2(SO4)3·18H2O

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The process of hydrolysis of aqueous aluminium sulfate was carried on in ammonia medium at 100°C and for different time intervals (0, 20, 39 or 59 h). The products thus obtained were calcined at 550, 900 or 1200°C for 2 h with the aim to obtain aluminium oxides. The materials were studied with the following methods: thermal analysis, IR spectroscopy, X-ray diffraction, low-temperature nitrogen adsorption, adsorption–desorption of benzene vapours and scanning electron microscopy.

Freshly precipitated material was an amorphous basic aluminium sulfate which after prolonged refluxing at elevated temperature in a mother liquor underwent a phase transformation into highly crystalline NH4Al13(SO4)2(OH)6 containing tridecameric unit Al13. It was accompanied by a decrease of specific surface area and the formation of a porous structure less accessible for benzene molecules. Regardless of the duration of the hydrolysis process, all products were characterised with poorly developed porous structure and hydrophilic character. Their calcination at the temperature up to 1200°C resulted in the formation of α-Al2O3 via transition forms of γ/η- and δ-Al2O3. The samples of aluminium oxides obtained after calcination at 550 and 900°C had higher values of specific surface area than starting materials due to processes of dehydroxylation and desulfurization. The process of calcination up to 900°C was reflected in developing of not only porous structure but also hydrophobic character of prepared materials. The S BET values calculated for the oxide samples obtained from aged products of hydrolysis at 1200°C were lower than for the analogous sample prepared without the ageing step. It was concluded that prolonged refluxing at elevated temperature of the products of hydrolysis of aluminium sulfate decreased thermal stability of final aluminium oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Trawczyński (1996) Appl. Catal. A 144 195 Occurrence Handle10.1016/0926-860X(96)00125-1

    Article  Google Scholar 

  2. KP Prodromou AS Pavlatou-Ve (1995) Clays Clay Miner. 43 111 Occurrence Handle10.1346/CCMN.1995.0430113 Occurrence Handle1:CAS:528:DyaK2MXltlSksrs%3D

    Article  CAS  Google Scholar 

  3. S Ramanathan SK Roy R Bhat DD Upadhyaya AR Biswas (1997) Ceram. Int. 23 45 Occurrence Handle10.1016/0272-8842(95)00139-5 Occurrence Handle1:CAS:528:DyaK2sXltlWmtQ%3D%3D

    Article  CAS  Google Scholar 

  4. B Pacewska O Kluk-Płoskońska D Szychowski (2006) J. Therm. Anal. Cal. 85 351 Occurrence Handle10.1007/s10973-005-9987-z Occurrence Handle1:CAS:528:DC%2BD28Xptlagt7s%3D

    Article  CAS  Google Scholar 

  5. B Pacewska O Kluk-Płoskońska D Szychowski (2006) J. Therm. Anal. Cal. 86 747

    Google Scholar 

  6. B Pacewska D Szychowski T Żmijewski et al. (2000) Computer program for evaluation of parameters of porous structure of solids Forum Chemiczne 2000 Warsaw

    Google Scholar 

  7. IN Bhattacharya PK Gochhayat PS Mukherjee S Paul PK Mitra (2004) Mater. Chem. Phys. 88 32 Occurrence Handle10.1016/j.matchemphys.2004.04.024 Occurrence Handle1:CAS:528:DC%2BD2cXnvVKgs78%3D

    Article  CAS  Google Scholar 

  8. JT Kloprogge JW Geus JBH Jansen D Seykens (1992) Thermochim. Acta 209 265 Occurrence Handle10.1016/0040-6031(92)80204-A Occurrence Handle1:CAS:528:DyaK3sXhtFGgs74%3D

    Article  CAS  Google Scholar 

  9. MD Sacks T-Y Tseng SY Lee (1984) Ceram. Bull. 63 301 Occurrence Handle1:CAS:528:DyaL2cXht1Gkt7w%3D

    CAS  Google Scholar 

  10. JK Pradhan IN Bhattacharya SC Das RP Das RK Panda (2000) Mater. Sci. Eng. B77 185 Occurrence Handle10.1016/S0921-5107(00)00486-4 Occurrence Handle1:CAS:528:DC%2BD3cXmtVKntbs%3D

    Article  CAS  Google Scholar 

  11. LV Duong BJ Wood JT Kloprogge (2005) Mater. Lett. 59 1932 Occurrence Handle10.1016/j.matlet.2005.02.029 Occurrence Handle1:CAS:528:DC%2BD2MXjsV2itbc%3D

    Article  CAS  Google Scholar 

  12. C Morterra G Magnacca (1996) Catal. Today 27 497 Occurrence Handle10.1016/0920-5861(95)00163-8 Occurrence Handle1:CAS:528:DyaK28XitVSksLo%3D

    Article  CAS  Google Scholar 

  13. JT Kloprogge RL Frost (1999) Spectrochim. Acta, Part A 55 1359 Occurrence Handle10.1016/S1386-1425(98)00324-2

    Article  Google Scholar 

  14. PT Davey GM Lukaszewski TR Scott (1963) Austr. J. Appl. Sci. 14 137 Occurrence Handle1:CAS:528:DyaF2cXns1Oi

    CAS  Google Scholar 

  15. E Kato K Daimon N Nanbu (1981) J. Am. Ceram. Soc. 64 436 Occurrence Handle10.1111/j.1151-2916.1981.tb09892.x Occurrence Handle1:CAS:528:DyaL3MXlvFWgsb0%3D

    Article  CAS  Google Scholar 

  16. DW Johnson FJ Schnettler (1981) J. Am. Ceram. Soc. 53 440 Occurrence Handle10.1111/j.1151-2916.1970.tb12673.x

    Article  Google Scholar 

  17. J Temuujin Ts Jadambaa KJD Mackenzie P Angerer F Porte F Riley (2000) Bull. Mater. Sci. 23 301 Occurrence Handle10.1007/BF02720086 Occurrence Handle1:CAS:528:DC%2BD3cXlsFyis78%3D

    Article  CAS  Google Scholar 

  18. K Ada Y Sarikaya T Alemdaroğlu M Önal (2003) Ceram. Int. 29 513 Occurrence Handle10.1016/S0272-8842(02)00195-5 Occurrence Handle1:CAS:528:DC%2BD3sXktVehtrk%3D

    Article  CAS  Google Scholar 

  19. D Mishra S Ananad RK Panda RP Das (2002) Mater. Lett. 53 133 Occurrence Handle10.1016/S0167-577X(01)00461-X Occurrence Handle1:CAS:528:DC%2BD38XhtFOksLs%3D

    Article  CAS  Google Scholar 

  20. J Trawczyński (1993) Przemysł Chemiczny 72 279

    Google Scholar 

  21. PaHo Hsu TF Bates (1964) Mineral. Mag. 33 749 Occurrence Handle10.1180/minmag.1964.033.264.04 Occurrence Handle1:CAS:528:DyaF2cXovFCqsg%3D%3D

    Article  CAS  Google Scholar 

  22. JE Blendell HK Bowen RL Coble (1984) Ceram. Bull. 63 797 Occurrence Handle1:CAS:528:DyaL2cXkslOmur0%3D

    CAS  Google Scholar 

  23. F Kara G Sahin (2000) J. Eur. Ceram. Soc. 20 689 Occurrence Handle10.1016/S0955-2219(99)00202-2 Occurrence Handle1:CAS:528:DC%2BD3cXitFyjs70%3D

    Article  CAS  Google Scholar 

  24. M Wang M Muhammed (1999) Nanostruct. Mater. 11 1219 Occurrence Handle10.1016/S0965-9773(99)00412-2 Occurrence Handle1:CAS:528:DC%2BD3cXjsVKisLY%3D

    Article  CAS  Google Scholar 

  25. JM Rousseaux P Weisbecker H Muhr E Plasari (2002) Ind. Eng. Chem. Res. 41 6059 Occurrence Handle10.1021/ie000053p Occurrence Handle1:CAS:528:DC%2BD38Xot1Krt7k%3D

    Article  CAS  Google Scholar 

  26. IUPAC Reporting Physisorption Data, Pure Appl. Chem., 57 (1985) 603.

  27. B Pacewska D Szychowski (2006) Przem. Chem. 48 171

    Google Scholar 

  28. B Pacewska D Szychowski (2005) J. Therm. Anal. Cal. 80 687 Occurrence Handle10.1007/s10973-005-0715-5 Occurrence Handle1:CAS:528:DC%2BD2MXks1CjtLY%3D

    Article  CAS  Google Scholar 

  29. H Nagai Y Oshima K Hirano A Kato (1993) Br. Ceram. Trans. 92 113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Pacewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacewska, B., Kluk-Płoskońska, O. & Szychowski, D. Influence of aluminium precursor on physico-chemical properties of aluminium hydroxides and oxides. J Therm Anal Calorim 87, 383–393 (2007). https://doi.org/10.1007/s10973-006-7898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7898-2

Keywords

Navigation