Skip to main content
Log in

Pyrolysis study of sewage sludge by TG-MS and TG-GC-MS coupled analyses

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pyrolysis of an urban plant sewage sludge carried out under He atmosphere was studied by thermogravimetric-mass spectrometric (TG-MS) and thermogravimetric-gas chromatographic-mass spectrometric (TG-GC-MS) analyses. The sludge was thermally degraded with a heating rate of 10°C min–1 in the 20–1000°C interval; its mass loss is 51.8% up to 600°C and 61.4% up to 1000°C. Gas chromatographic analyses of the gas released during major thermogravimetric events allow the identification of various chemical species. Water, carbon mono- and di-oxide, several hydrocarbons (up to C5, both saturated and unsaturated) were the major detected species. Minor amount of pollutant species, such as cyano-compounds, were also detected. Among the released species hydrocarbons constituted the major fraction (53%), thus suggesting their immediate exploitation as fuel gas. The pyrolysis behaviour of this sample was then compared with other sewage sludge arising from wastewater treatment plants subjected to anaerobic digestion as found in literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J Werther T Ogada (1999) Prog. Energy Combust. Sci. 25 55 Occurrence Handle10.1016/S0360-1285(98)00020-3 Occurrence Handle1:CAS:528:DyaK1MXhtVyitLg%3D

    Article  CAS  Google Scholar 

  2. A Fullana JA Conesa R Font I Martín-Gullón (2003) J. Anal. Appl. Pyrolysis 68–69 561 Occurrence Handle10.1016/S0165-2370(03)00052-4

    Article  Google Scholar 

  3. R Font A Fullana JA Conesa F Llavador (2001) J. Anal. Appl. Pyrolysis 58–59 927 Occurrence Handle10.1016/S0165-2370(00)00146-7

    Article  Google Scholar 

  4. L Shen D Zhang (2003) Fuel 82 465 Occurrence Handle10.1016/S0016-2361(02)00294-6 Occurrence Handle1:CAS:528:DC%2BD38Xpt12ms7s%3D

    Article  CAS  Google Scholar 

  5. A Adegoroye N Paterson X Li T Morgan AA Herod DR Dugwell R Kandiyoti (2004) Fuel 83 1949 Occurrence Handle10.1016/j.fuel.2004.04.006 Occurrence Handle1:CAS:528:DC%2BD2cXlsFeru74%3D

    Article  CAS  Google Scholar 

  6. M Dogru A Midilli CR Howarth (2002) Fuel Processing Technol. 75 55 Occurrence Handle10.1016/S0378-3820(01)00234-X Occurrence Handle1:CAS:528:DC%2BD3MXptFemt7s%3D

    Article  CAS  Google Scholar 

  7. KJ Ptasinski C Hamelinck PJAM Kerkhof (2002) Energy Convers. Manage. 43 1445 Occurrence Handle10.1016/S0196-8904(02)00027-4 Occurrence Handle1:CAS:528:DC%2BD38Xis1yjsLs%3D

    Article  CAS  Google Scholar 

  8. TW Marrero BP McAuley WR Sutterlin JS Morris SE Manahan (2004) Waste Manage. 24 193 Occurrence Handle10.1016/S0956-053X(03)00127-2 Occurrence Handle1:CAS:528:DC%2BD2cXosFSksA%3D%3D

    Article  CAS  Google Scholar 

  9. A Midilli M Dogru G Akay CR Howarth (2002) Int. J. Hydrogen Energy 27 1035 Occurrence Handle10.1016/S0360-3199(02)00011-3 Occurrence Handle1:CAS:528:DC%2BD38XkslGqtr8%3D

    Article  CAS  Google Scholar 

  10. JA Conesa A Marcilla R Moral J Moreno-Caselles A Perez-Espinosa (1998) Thermochim. Acta 313 63 Occurrence Handle10.1016/S0040-6031(97)00474-7 Occurrence Handle1:CAS:528:DyaK1cXhtVCqtLg%3D

    Article  CAS  Google Scholar 

  11. M Otero LF Calvo B Estrada AI García A Morán (2002) Thermochim. Acta 389 121 Occurrence Handle10.1016/S0040-6031(01)00856-5 Occurrence Handle1:CAS:528:DC%2BD38Xkt1emtb4%3D

    Article  CAS  Google Scholar 

  12. M Otero C Díez LF Calvo AI García A Morán (2002) Biomass Bioenergy 22 319 Occurrence Handle10.1016/S0961-9534(02)00012-0 Occurrence Handle1:CAS:528:DC%2BD38XhvVChtrk%3D

    Article  CAS  Google Scholar 

  13. LF Calvo ME Sánchez A Morán AI García (2004) J. Therm. Anal. Cal. 78 587 Occurrence Handle10.1023/B:JTAN.0000046121.14253.38 Occurrence Handle1:CAS:528:DC%2BD2cXovFOgtrc%3D

    Article  CAS  Google Scholar 

  14. R Campostrini M Ischia L Palmisano (2003) J. Therm. Anal. Cal. 71 997 Occurrence Handle10.1023/A:1023307100279 Occurrence Handle1:CAS:528:DC%2BD3sXjvVyksr4%3D

    Article  CAS  Google Scholar 

  15. R Campostrini M Ischia L Palmisano (2003) J. Therm. Anal. Cal. 71 1011 Occurrence Handle10.1023/A:1023359117117 Occurrence Handle1:CAS:528:DC%2BD3sXjvVyksr8%3D

    Article  CAS  Google Scholar 

  16. R Campostrini M Ischia L Palmisano (2004) J. Therm. Anal. Cal. 75 13 Occurrence Handle10.1023/B:JTAN.0000017324.05515.b9 Occurrence Handle1:CAS:528:DC%2BD2cXhsFaisLk%3D

    Article  CAS  Google Scholar 

  17. R Campostrini M Ischia L Palmisano (2004) J. Therm. Anal. Cal. 75 25 Occurrence Handle10.1023/B:JTAN.0000017325.43152.9c Occurrence Handle1:CAS:528:DC%2BD2cXhsFaisLY%3D

    Article  CAS  Google Scholar 

  18. R Campostrini M Ischia L Armelao (2004) J. Therm. Anal. Cal. 78 657 Occurrence Handle10.1023/B:JTAN.0000046126.10820.3c Occurrence Handle1:CAS:528:DC%2BD2cXovFOgtrw%3D

    Article  CAS  Google Scholar 

  19. DP Shoemaker CW Garland JI Steinfeld JW Nibler et al. (1981) Experiments in Physical Chemistry, 4th Ed. McGraw Hill New York, NY 125

    Google Scholar 

  20. RH Perry et al. (1984) Perry’s Chemical Engineers Handbook McGraw Hill New York, NY

    Google Scholar 

  21. Mass Spectra Library of NBS-NIST US, Department of Commerce, Gaitoers-Burg MD 1989.

  22. A Arenillas F Rubiera JJ Pis (1999) J. Anal. Appl. Pyrolysis 50 31 Occurrence Handle10.1016/S0165-2370(99)00024-8 Occurrence Handle1:CAS:528:DyaK1MXhvFCqs74%3D

    Article  CAS  Google Scholar 

  23. LF Calvo M Otero BM Jenkins AI Garcia A Moran (2004) Termochim. Acta 409 127 Occurrence Handle10.1016/S0040-6031(03)00359-9 Occurrence Handle1:CAS:528:DC%2BD3sXpvFGhsb8%3D

    Article  CAS  Google Scholar 

  24. JA Menéndez A Dominguez M Inguanzo JJ Pis (2004) J. Anal. Appl. Pyrolysis 71 657 Occurrence Handle10.1016/j.jaap.2003.09.003

    Article  Google Scholar 

  25. M Inguanzo A Dominguez JA Menéndez CG Blanco JJ Pis (2002) J. Anal. Appl. Pyrolysis 63 209 Occurrence Handle10.1016/S0165-2370(01)00155-3 Occurrence Handle1:CAS:528:DC%2BD38Xmtlaluw%3D%3D

    Article  CAS  Google Scholar 

  26. PJ Hatton BWL Southward (2003) J. Therm. Anal. Cal. 72 83 Occurrence Handle10.1023/A:1023903316151 Occurrence Handle1:CAS:528:DC%2BD3sXktVymt7g%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ischia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ischia, M., Perazzolli, C., Dal Maschio, R. et al. Pyrolysis study of sewage sludge by TG-MS and TG-GC-MS coupled analyses. J Therm Anal Calorim 87, 567–574 (2007). https://doi.org/10.1007/s10973-006-7690-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7690-3

Keywords

Navigation