Skip to main content
Log in

αc Relaxation of the constrained amorphous phase

Polyethylene-chalk composites

  • Regular Papers
  • Organics/Polymers
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The study presents properties of polyethylene commercial products with special attention to properties of a ‘semi-ordered’ amorphous phase. Although, one can hardly prove the existence of such an interphase, the results description based on the idea of coexistence of two amorphous fractions (‘real’ and ‘semi-ordered’) in one system gives a broader understanding of the relationship between product history and morphology of the resultant engineering products. Their supermolecular structures were explored using positron annihilation lifetime spectroscopy (PALS), calorimetry (DSC) and mechanical spectroscopy in a tensile and a torsion mode (DMTA). The stability of these structures is also discussed based on a simple statistical analysis of the thermodynamic and structural parameters. The study exhibited that chalk did not disturb too much the crystalline domains of PE-LD whereas it influenced the interphase. Mechanical study showed that such a product is not stable during long time storage. The comparison with previous results, obtained for PE-carbon black composites, revealed differences in the morphologies and the αc relaxations of PE chains, observed in the composites including various fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. G. McCrum, B. E. Read and G. Williams, Anelastic and dielectric effects in polymeric solids, J. Wiley and Sons, London 1967.

    Google Scholar 

  2. I. M. Ward, Mechanical properties of solid polymers, J. Wiley and Sons, London 1971.

    Google Scholar 

  3. K. Schmider and K. Wolf, Kolloid Z., 134 (1953) 149.

    Article  Google Scholar 

  4. H. Thurn, Kolloid Z., 134 (1953) 72.

    Google Scholar 

  5. K. Kabayashi and T. Nagasawa, J. Polym. Sci. Part C, 15 (1966) 163.

    Google Scholar 

  6. L. Mandelkern, J. M. Price, M. Goplan and J. G. Fatou, J. Polym. Sci. Part A, 4 (1966) 4385.

    Google Scholar 

  7. H. A. Flocke, Kolloid Z., 180 (1962) 118.

    Article  Google Scholar 

  8. V. B. F. Mathot, Ed., Calorimetry and thermal analysis of polymers, Hanser Publisher, Munich 1994, Chapters 5–6.

    Google Scholar 

  9. L. C. Struik, Polymer, 28 (1987) 1521.

    Article  CAS  Google Scholar 

  10. L. C. Struik, Polymer, 28 (1987) 1534.

    Article  CAS  Google Scholar 

  11. L. C. Struik, Polymer, 30 (1989) 799.

    Article  CAS  Google Scholar 

  12. L. C. Struik, Polymer, 30 (1989) 815.

    Article  CAS  Google Scholar 

  13. A. Danch, J. Thermal Anal., 54 (1998) 151.

    Article  CAS  Google Scholar 

  14. A. Danch and A. Gadomski, J. Mol. Liq., 83 (2000) 249.

    Article  Google Scholar 

  15. A. Danch, J. Therm. Anal. Cal., 65 (2001) 525.

    Article  CAS  Google Scholar 

  16. A. Danch, W. Osoba and F. Stelzer, Eur. Polym. J., 39 (2003) 2051.

    Article  CAS  Google Scholar 

  17. A. Danch, Fibr. Text. East. Eur., 11 (2003) 128.

    Google Scholar 

  18. A. Danch and W. Osoba, J. Mater. Process Technol., 155–156 (2004) 1428.

    Article  Google Scholar 

  19. A. Danch, A. Kocot, J. Zioło and F. Stelzer, Macromol. Chem. Phys., 202 (2001) 105.

    Article  CAS  Google Scholar 

  20. W. W. Sułkowski, J. Borek, A. Danch, A. Radoń, A. Sułkowska, J. Ossowska, G. Teborowicz and A. Bernatek, J. Therm. Anal. Cal., 77 (2004) 363.

    Article  Google Scholar 

  21. A. Danch, W. W. Sułkowski, M. Moczyński, A. Radoń, F. Stelzer and S. Jurga, J. Appl. Polym. Sci., 94 (2004) 1186.

    Article  CAS  Google Scholar 

  22. M. S. Graff and R. H. Boyd, Polymer, 35 (1994) 1797.

    Article  CAS  Google Scholar 

  23. W. G. Hu, C. Boeffel and K. Schmidt-Rohr, Macromolecules, 32 (1999) 1611.

    Article  CAS  Google Scholar 

  24. S. Głowinkowski, M. Makrocka-Rydzyk, S. Wanke and S. Jurga, Eur. Polym. J., 38 (2002) 961.

    Article  Google Scholar 

  25. M. Kozak, A. Danch, W. Osoba, L. Domka, F. Stelzer and S. Jurga, Polym. Polym. Compos., 12 (2004) 409.

    CAS  Google Scholar 

  26. L. Domka, Colloid Polym. Sci., 272 (1994) 1190.

    Article  CAS  Google Scholar 

  27. L. Domka, A. Krysztafkiewicz and B. Marciniec, Pat. PRL Nr 157 (1983).

  28. A. Danch and W. Osoba, J. Therm. Anal. Cal., 72 (2003) 641.

    Article  CAS  Google Scholar 

  29. A. Danch and W. Osoba, Desalination, 163 (2004) 143.

    Article  CAS  Google Scholar 

  30. A. Danch and W. Osoba, Fibr. Text. East. Eur., 11 (2003) 126.

    Google Scholar 

  31. A. Danch and W. Osoba, Radiat. Phys. Chem., 68 (2003) 445.

    Article  CAS  Google Scholar 

  32. A. Danch, J. Therm. Anal. Cal., 79 (2005) 205.

    Article  CAS  Google Scholar 

  33. W. Osoba, Acta Phys. Pol. A, 99 (2001) 447.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Danch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danch, A., Osoba, W., Chrobak, D. et al. αc Relaxation of the constrained amorphous phase. J Therm Anal Calorim 90, 201–208 (2007). https://doi.org/10.1007/s10973-006-7599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7599-x

Keywords

Navigation