Skip to main content
Log in

Determination and comparison of the plane stress essentialwork of fracture of three polyesters PET, PPT and PBT

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The essential work of fracture (EWF) method has been used to study the relationship between molecular structure and thin film fracture toughness for three ductile polyesters at ambient temperature. The fracture toughness of PPT is of particular interest. Successful fracture characterisation of thin film polyesters has been achieved by the EWF method using double edge notched tension (DENT) specimens. The specific essential work of fracture, w e, for polyethylene terephthalate (PET), polypropylene terephthalate (PPT) and polybutylene terephthalate (PBT) films is found to be 35.54±2.56, 41.03±3.23 and 31.34±8.60 kJ m–2, respectively. Differential scanning calorimetry (DSC) has been employed to investigate the crystallinity of the polymers concerned and the effect of this on their EWF values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B Lipsitt (1998) Med. Plast. Biomat. September 46

    Google Scholar 

  2. JH Ko L Odegaard (1997) Med. Plast. Biomat. March 44

    Google Scholar 

  3. B Haridas CA Haynes (1999) Med. Device Diagn. Ind. October 112

    Google Scholar 

  4. L Czuba (1999) Med. Device Diagn. Ind. April 80

    Google Scholar 

  5. A Tcharkhtchi E Andersen (2002) Med. Device Diagn. Ind. May 103

    Google Scholar 

  6. K Sauerteig M Giese (1998) Med. Plast. Biomat. May 46

    Google Scholar 

  7. W Leventon (2002) Med. Device Diagn. Ind. January 76

    Google Scholar 

  8. L Cousin-Cornet M Nait Abdelaziz G Mesmacque C Cazeneuve et al. (2000) Fracture of Polymers, Composites and Adhesives Elsevier Oxford 201

    Google Scholar 

  9. YW Mai B Cotterell R Horlyck G Vigna (1987) Polym. Eng. Sci. 27 804 Occurrence Handle1:CAS:528:DyaL2sXkslyrs7k%3D Occurrence Handle10.1002/pen.760271106

    Article  CAS  Google Scholar 

  10. MA James et al. (1998) Ph.D. thesis Kansas State University Kansas

    Google Scholar 

  11. S Hashemi (2000) Polym. Eng. Sci. 40 798 Occurrence Handle1:CAS:528:DC%2BD3cXisVSnuro%3D Occurrence Handle10.1002/pen.11209

    Article  CAS  Google Scholar 

  12. S Hashemi (1993) Plast. Rubber Compos. Process. 20 229 Occurrence Handle1:CAS:528:DyaK2cXmtlamsrk%3D

    CAS  Google Scholar 

  13. WYF Chan JG Williams (1994) Polymer 35 1666 Occurrence Handle1:CAS:528:DyaK2cXjtVSjurY%3D Occurrence Handle10.1016/0032-3861(94)90840-0

    Article  CAS  Google Scholar 

  14. ECY Ching RKY Li YW Mai (2000) Polym. Eng. Sci. 40 310 Occurrence Handle1:CAS:528:DC%2BD3cXhsFyktrw%3D Occurrence Handle10.1002/pen.11164

    Article  CAS  Google Scholar 

  15. J Karger-Kocsis T Czigány EJ Moskala (1998) Polymer 39 3939 Occurrence Handle1:CAS:528:DyaK1cXjslegs7k%3D Occurrence Handle10.1016/S0032-3861(98)00029-9

    Article  CAS  Google Scholar 

  16. S Hashemi (2000) Polym. Eng. Sci. 40 132 Occurrence Handle1:CAS:528:DC%2BD3cXhslOjt70%3D Occurrence Handle10.1002/pen.11146

    Article  CAS  Google Scholar 

  17. S Hashemi (2000) Polym. Eng. Sci. 40 1435 Occurrence Handle1:CAS:528:DC%2BD3cXksFyisbo%3D Occurrence Handle10.1002/pen.11273

    Article  CAS  Google Scholar 

  18. DE Mouzakis J Karger-Kocsis EJ Moskala (2000) J. Mater. Sci. Lett. 19 1615 Occurrence Handle1:CAS:528:DC%2BD3cXns1ens78%3D Occurrence Handle10.1023/A:1006797522901

    Article  CAS  Google Scholar 

  19. A Arkhireyeva S Hashemi (2001) Plast. Rubber Compos. 30 125 Occurrence Handle1:CAS:528:DC%2BD3MXjsVemsrw%3D

    CAS  Google Scholar 

  20. A Arkhireyeva S Hashemi (2002) J. Mater. Sci. 37 3675 Occurrence Handle1:CAS:528:DC%2BD38XlsFKntLk%3D Occurrence Handle10.1023/A:1016561225281

    Article  CAS  Google Scholar 

  21. S Hashemi (2002) Polymer 43 4033 Occurrence Handle1:CAS:528:DC%2BD38XjtlKltrY%3D Occurrence Handle10.1016/S0032-3861(02)00204-5

    Article  CAS  Google Scholar 

  22. C Hwo T Forschner R Lowtan D Gwyn B Cristea (1999) J. Plast. Film Sheet. 15 219 Occurrence Handle1:CAS:528:DC%2BD3cXkvVOqtg%3D%3D Occurrence Handle10.1106/9JG9-2UDP-AKH1-KNQ0

    Article  CAS  Google Scholar 

  23. YW Mai B Cotterell (1986) Int. J. Fracture 32 105 Occurrence Handle1:CAS:528:DyaL2sXhtVaqtLw%3D Occurrence Handle10.1007/BF00019787

    Article  CAS  Google Scholar 

  24. J Karger-Kocsis EJ Moskala PP Shang (2000) J. Therm. Anal. Cal. 63 671 Occurrence Handle10.1023/A:1010123617593

    Article  Google Scholar 

  25. KB Broberg (1968) Int. J. Fracture 4 11

    Google Scholar 

  26. KB Broberg (1975) J. Mech. Phys. Solids 23 215 Occurrence Handle10.1016/0022-5096(75)90017-4

    Article  Google Scholar 

  27. B Cotterell JK Reddel (1977) Int. J. Fracture 13 267 Occurrence Handle1:CAS:528:DyaE1cXltlCjsLk%3D

    CAS  Google Scholar 

  28. EQ Clutton et al. (2001) FractureMechanics: TestingMethods for Polymers, Adhesives and Composites Elsevier Oxford 177

    Google Scholar 

  29. R Hill (1952) J. Mech. Phys. Solids 1 19 Occurrence Handle10.1016/0022-5096(52)90003-3

    Article  Google Scholar 

  30. J Brandrup EH Immergut et al. (1989) Polymer Handbook, 3rd Ed. John Wiley & Sons Inc. New York VII, p. 23

    Google Scholar 

  31. HH Chuah D Lin-Vien U Soni (2001) Polymer 42 7137 Occurrence Handle1:CAS:528:DC%2BD3MXjt12nsr0%3D Occurrence Handle10.1016/S0032-3861(01)00043-X

    Article  CAS  Google Scholar 

  32. P. Persigehl, Bayer AG, Uerdingen, Germany, Personal communication, 10th March 2003.

  33. DJ Blundell DR Beckett PH Willcocks (1981) Polymer 22 704 Occurrence Handle1:CAS:528:DyaL3MXltFKju7c%3D Occurrence Handle10.1016/0032-3861(81)90366-9

    Article  CAS  Google Scholar 

  34. The Advanced Thermal Analysis System Databank [online], http://web.utk.edu/~athas/databank/intro.html, accessed 15th May 2003.

  35. Shell Chemicals [online], http://www.shellchemicals.com/chemicals/products/tech_paper/0,1187,34,00.html, accessed 5th November 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Connolly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vincent, L., Connolly, S.N., Dolan, F. et al. Determination and comparison of the plane stress essentialwork of fracture of three polyesters PET, PPT and PBT. J Therm Anal Calorim 86, 147–154 (2006). https://doi.org/10.1007/s10973-006-7595-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7595-1

Keywords

Navigation