Skip to main content
Log in

Influence of albumin adsorption on physico-chemical properties of alumina surfaces

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of albumin adsorption on neutral active aluminium oxide was investigated in the presence of polar and non-polar liquids. The adsorbed values were highest near the isoelectric point of albumin and varied in the range 5–10 and 3–11 mg g–1 with phosphate buffer and potassium chloride respectively after 2 and 24 h. In the case of aluminium oxide the effect of albumin adsorption on total heterogeneity of adsorbents is not explicit. On the one hand, the modified samples showed decreasing surface area with increase of surface coverage with albumin. On the other hand, modifications under the same conditions but without albumin caused similar changes. These effects suggest the strong influence of medium pH on surface properties (due to surface polarization) and competitive co-adsorption of ions on the process. The volumetric fractal dimensions of the studied materials change in the range 2.25–2.32 for pure aluminium oxide and BSA modified from the phosphate solution. E d,max values (desorption energy in the maximum of distribution function) diminish (in the range 40–45 kJ mol–1) compared with pure aluminium oxide (E d,max=52 kJ mol–1) for water thermodesorption at modified surfaces to the increase of a number of active centers of hydrophobic character, and weakening of the adsorbent–adsorbate increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HL Fleming (1998) Stud. Surf. Sci. Catal. 120 561 Occurrence Handle10.1016/S0167-2991(99)80565-5

    Article  Google Scholar 

  2. S Joshi J Foir (1986) Ind. Eng. Chem. Fund. 3 4

    Google Scholar 

  3. PC Saunders JW Hightower (1970) J. Phys. Chem. 74 4323 Occurrence Handle10.1021/j100719a005

    Article  Google Scholar 

  4. G Gati H Knozinger (1972) Z. Phys. Chem. 78 243 Occurrence Handle1:CAS:528:DyaE38XlsFWhtb4%3D

    CAS  Google Scholar 

  5. JB Peri (1965) J. Phys. Chem. 69 220 Occurrence Handle1:CAS:528:DyaF2MXisFynsQ%3D%3D

    CAS  Google Scholar 

  6. BC Lippens JJ Steggerda et al. (1970) Physical and Chemical Aspects of Adsorbents and Catalysts Academic New York 171

    Google Scholar 

  7. R Fiedorow R Leaute IG Dalla Lana (1984) J. Catal. 85 339 Occurrence Handle1:CAS:528:DyaL2cXktVeqtQ%3D%3D Occurrence Handle10.1016/0021-9517(84)90223-9

    Article  CAS  Google Scholar 

  8. J Berk (1972) Przem. Chem. 51 607

    Google Scholar 

  9. GA Parks (1965) Chem. Rev. 65 177 Occurrence Handle1:CAS:528:DyaF2MXntVWlsw%3D%3D Occurrence Handle10.1021/cr60234a002

    Article  CAS  Google Scholar 

  10. CP Huang W Stumm (1973) J. Colloid Interface Sci. 43 409 Occurrence Handle1:CAS:528:DyaE3sXktFShsLk%3D Occurrence Handle10.1016/0021-9797(73)90387-1

    Article  CAS  Google Scholar 

  11. L Wang WK Hall (1981) J. Catal. 66 251 Occurrence Handle10.1016/0021-9517(80)90029-9

    Article  Google Scholar 

  12. JA Davis JO Leckie (1980) J. Colloid Interface Sci. 74 32 Occurrence Handle1:CAS:528:DyaL3cXhtFOjtbg%3D Occurrence Handle10.1016/0021-9797(80)90168-X

    Article  CAS  Google Scholar 

  13. CA Haynes W Norde (1994) Colloids Surf., B 2 517 Occurrence Handle1:CAS:528:DyaK2cXmslCmtrs%3D Occurrence Handle10.1016/0927-7765(94)80066-9

    Article  CAS  Google Scholar 

  14. A Sadana (1992) Chem. Rev. 92 1799 Occurrence Handle1:CAS:528:DyaK38XmsVOiurs%3D Occurrence Handle10.1021/cr00016a006

    Article  CAS  Google Scholar 

  15. PM Claesson E Blomberg JC Fröberg T Nylander T Arnebrant (1995) Adv. Colloid Interface Sci. 57 161 Occurrence Handle1:CAS:528:DyaK2MXlsFCjtL0%3D Occurrence Handle10.1016/0001-8686(95)00241-H

    Article  CAS  Google Scholar 

  16. S Oscarsson (1997) J. Chromatogr. B 699 117 Occurrence Handle1:CAS:528:DyaK2sXmvFWitbc%3D

    CAS  Google Scholar 

  17. H Larsericsdotter S Oscarsson J Buijs (2005) J. Colloid Interface Sci. 289 26 Occurrence Handle1:CAS:528:DC%2BD2MXlvVWjtbk%3D Occurrence Handle10.1016/j.jcis.2005.03.064

    Article  CAS  Google Scholar 

  18. MM Bradford (1976) Anal. Biochem. 72 248 Occurrence Handle1:CAS:528:DyaE28XksVehtrY%3D Occurrence Handle10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  19. OH Lowry NJ Rosbrough AL Farr RJ Randall (1951) J. Biol. Chem. 193 265 Occurrence Handle1:CAS:528:DyaG38XhsVyrsw%3D%3D

    CAS  Google Scholar 

  20. GM Oostra NS Mathewson GN Catravas (1978) Anal. Biochem. 89 31 Occurrence Handle10.1016/0003-2697(78)90723-6

    Article  Google Scholar 

  21. NJ Greenfield (1999) Trends Anal. Chem. 18 236 Occurrence Handle1:CAS:528:DyaK1MXislSgsrs%3D Occurrence Handle10.1016/S0165-9936(98)00112-5

    Article  CAS  Google Scholar 

  22. SM Kelly NC Price (1997) Biochim. Biophys. Acta 1338 161 Occurrence Handle1:CAS:528:DyaK2sXhslOmsLs%3D

    CAS  Google Scholar 

  23. F Parker et al. (1983) Applications of Infrared, Raman and Resonance Raman Spectroscopy in Biochemistry Plenum Press New York

    Google Scholar 

  24. T Chen DM Oakley (1995) Thermochim. Acta 248 229 Occurrence Handle1:CAS:528:DyaK2MXivVOrt70%3D Occurrence Handle10.1016/0040-6031(94)01892-K

    Article  CAS  Google Scholar 

  25. H Urano S Fukuzaki (2002) J. Colloid Interface Sci. 252 284 Occurrence Handle1:CAS:528:DC%2BD38XmtV2gt7w%3D Occurrence Handle10.1006/jcis.2002.8500

    Article  CAS  Google Scholar 

  26. D Sarkar DK Chattoraj (1996) J. Colloid Interface Sci. 178 606 Occurrence Handle1:CAS:528:DyaK28XitlSgurg%3D Occurrence Handle10.1006/jcis.1996.0157

    Article  CAS  Google Scholar 

  27. BM Kats VV Kutarov (1996) Langmuir 12 2762 Occurrence Handle1:CAS:528:DyaK28XivVCgu7g%3D Occurrence Handle10.1021/la9403441

    Article  CAS  Google Scholar 

  28. P Staszczuk D Sternik VV Kutarov (2003) J. Therm. Anal. Cal. 69 23 Occurrence Handle10.1023/A:1019973303894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Staszczuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternik, D., Staszczuk, P., Sobieszek, J. et al. Influence of albumin adsorption on physico-chemical properties of alumina surfaces. J Therm Anal Calorim 86, 77–83 (2006). https://doi.org/10.1007/s10973-006-7580-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7580-8

Keywords

Navigation