Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 2, pp 643–647 | Cite as

Low-temperature heat capacity and thermodynamic properties of crystalline lead formate

  • J. Zhang
  • Y. Y. Liu
  • Z. H. Zhang
  • X. C. Lv
  • L. X. SunEmail author
  • F. Xu
  • Z. C. Tan
  • T. Zhang
  • Y. Sawada
Article

Abstract

As one 3-D coordination polymer, lead formate was synthesized; calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of lead formate was measured by a precise automated adiabatic calorimeter over the temperature range from 80 to 380 K. No thermal anomaly or phase transition was observed in this temperature range. A four-step sequential thermal decomposition mechanism for the lead formate was found through the DSC and TG-DTG techniques at the temperature range from 500 to 635 K.

Keywords

adiabatic calorimetry coordination polymers DSC heat capacity lead formate phase transition TG-DTG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L.C. Rowsell and O. M. Yaghi, Micropor. Mesopor. Mater., 73 (2004) 3.CrossRefGoogle Scholar
  2. 2.
    S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem. Int. Ed., 43 (2004) 2334.CrossRefGoogle Scholar
  3. 3.
    P. G. Harrison and A. T. Steel, J. Organomet. Chem., 239 (1982) 105.CrossRefGoogle Scholar
  4. 4.
    R. C. Weast, CRC Handbook of Chemistry and Physics, 62nd Ed. (Chemical Rubber, Boca Raton, FL 1981).Google Scholar
  5. 5.
    K. Betzler, H. Hesse, R. Jaquet and D. Lammers, J. Appl. Phys., 87 (2000) 2.CrossRefGoogle Scholar
  6. 6.
    P. Baraldi, Spectrochim. Acta A, 37 (1981) 99.CrossRefGoogle Scholar
  7. 7.
    M. N. Ray and N. D. Sinnarkar, J. Inorg. Nucl. Chem., 35 (1973) 1373.CrossRefGoogle Scholar
  8. 8.
    V. G. Bessergenev, Y. A. Kovalevskaya, L. G. Lavrenova and I. E. Paukov, J. Therm. Anal. Cal., 75 (2004) 331.CrossRefGoogle Scholar
  9. 9.
    J. Boerio-Goates, R. Stevens, B. Lang and B. F. Woodfield, J. Therm. Anal. Cal., 69 (2002) 773.CrossRefGoogle Scholar
  10. 10.
    V. A. Drebushchak, E. V. Boldyreva, Y. A. Kovalevskaya, I. E. Paukov and T. N. Drebushchak, J. Therm. Anal. Cal., 79 (2005) 65.CrossRefGoogle Scholar
  11. 11.
    V. Rohac, M. Fulem, H. G. Schmidt, V. Ruzicka, K. Ruzicka and G. Wolf, J. Therm. Anal. Cal., 70 (2002) 455.CrossRefGoogle Scholar
  12. 12.
    L. Wang, Z. C. Tan, S. H. Meng, D. B. Liang, S. T. Ji and Z. K. Hei, J. Therm. Anal. Cal., 66 (2001) 409.CrossRefGoogle Scholar
  13. 13.
    Z. C. Tan, B. Xue, S. W. Lu, S. H. Meng, X. H. Yuan and Y. S. Song, J. Therm. Anal. Cal., 63 (2000) 297.CrossRefGoogle Scholar
  14. 14.
    D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein and B. D. West, J. Res. Natl. Bur. Stand., 87 (1982) 159.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • J. Zhang
    • 1
    • 2
  • Y. Y. Liu
    • 1
    • 2
  • Z. H. Zhang
    • 1
    • 2
  • X. C. Lv
    • 1
    • 2
  • L. X. Sun
    • 1
    Email author
  • F. Xu
    • 1
  • Z. C. Tan
    • 1
  • T. Zhang
    • 1
  • Y. Sawada
    • 3
  1. 1.Materials and Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.Department of Nanochemistry, Faculty of EngineeringTokyo Polytechnic UniversityKanagawaJapan

Personalised recommendations