Skip to main content
Log in

Thermal behavior of a bentonite

  • Regular Papers
  • Material Science/Kinetics/Geoscience
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mineralogical composition of the Kütahya calcium bentonite (CaB) from Turkey was obtained as mass% of 60% calcium rich smectite (CaS), 30% opal-CT (OCT), trace amount illite (I), and some non-clay impurities by using chemical analysis (CA), X-ray diffraction (XRD), and thermal analysis (TG-DTA) data. The crystallinity, porosity, and surface area of the samples heated between 25–1300°C for 2 h were examined by using XRD, TG, DTA and N2-adsorption-desorption data. The position of the 001 reflection which is the most characteristic for CaS does not affect from heating between 25–600°C and then disappeared. The decrease in relative intensity (I/I 0) from 1.0 to zero and the increase in full width at half-maximum peak height (FWHM) from 0.25 to 1.0° of the 001 reflection show that the crystallinity of the CaS decreased continuously by rising the heating temperature from 25 to 900°C and then collapsed. The most characteristic 101 reflection for opals intensifies greatly between 900 and 1100°C with the opal becoming more crystalline.

The total water content of the natural bentonite after dried at 25, 105 and 150°C for 48 h were determined as 8.8, 5.0 and 2.5%, respectively. The mass loss occurs between 25 and 400°C over two steps with the maximum rate at 80 and 150°C, respectively. The exact distinction of the dehydration temperatures for the adsorbed water and interlayer water is seen almost impossible. The temperature interval, maximum rate temperature, and mass loss during dehydroxylation are 400–800°C, 670°C and 4.6–5.0%, respectively. The maximum rate temperatures for decrystallization and recrystallization are 980 and 1030°C, respectively. The changes in specific micropore volume (V mi), specific mesopore volume (V me), specific surface area (S) were discussed according to the dehydration and dehydroxylation of the CaS. The V mi, V me and S reach to their maxima at around 400°C with the values of 0.045, 0.115 cm3 g−1 and 90 m2 g−1, respectively. The radii of mesopores for the bentonite heated at 400°C are distributed between 1–10 nm and intensified approximately at 1.5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Grim, Clay Minerology, 2nd Ed., McGraw-Hill, New York 1968.

    Google Scholar 

  2. R. E. Grim and N. Güven, Bentonites, Geology, Mineralogy, Properties and Uses. Development in Sedimentology, Vol. 24, Elsevier, Amsterdam 1978.

    Google Scholar 

  3. R. M. Barrer, Clays Clay Miner., 37 (1989) 385.

    Article  CAS  Google Scholar 

  4. E. Srasra, F. Bergaya, H. van Damme and N. K. Ariquib, Appl. Clay Sci., 4 (1989) 411.

    Article  CAS  Google Scholar 

  5. E. Gamiz, J. Linares and R. Delgado, Appl. Clay Sci., 6 (1992) 359.

    Article  CAS  Google Scholar 

  6. D. M. Moore and R. C. Reynolds Jr., X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd Ed., Oxford University Press, Oxford 1997.

    Google Scholar 

  7. H. H. Murray, Appl. Clay Sci., 17 (2000) 207.

    Article  CAS  Google Scholar 

  8. T. J. Pinnavaia, Science, 220 (1983) 365.

    Article  CAS  Google Scholar 

  9. R. S. Varma, Tetrahedron, 58 (2002) 1235.

    Article  CAS  Google Scholar 

  10. M. C. Wang, J. M. Benway and A. M. Arayssi, In Physicochemical Aspects of Soil and Related Materials, K. B. Hoodinott, R. O. Lamb and A. J. Lutenegger, Eds, ASTM STP 1095, Philadelphia 1990, pp. 1139–1158.

    Google Scholar 

  11. M. M. Abu-Zreig, N. M. Al-Akhras and M. F. Attom, Appl. Clay Sci., 20 (2001) 129.

    Article  CAS  Google Scholar 

  12. S. Chandrasekhar and S. Ramaswamy, Appl. Clay Sci., 21 (2002) 133.

    Article  CAS  Google Scholar 

  13. Ö. Tan, L. Yılmaz and S. Zamioğlu, Mater. Lett., 58 (2004) 1176.

    Article  CAS  Google Scholar 

  14. I. Kolaríková, R. Prikryl, R. Hanus and E. Jelínek, Appl. Clay Sci., 29 (2005) 215.

    Article  CAS  Google Scholar 

  15. W. F. Bradley and R. E. Grim, Am. Mineral., 36 (1951) 182.

    CAS  Google Scholar 

  16. G. W. Brindley, Ceramica, 24 (1978) 217.

    CAS  Google Scholar 

  17. T. Mozas, S. Bruque and A. Rodriquez, Clay Miner., 15 (1980) 421.

    Article  CAS  Google Scholar 

  18. W. T. Reicle, J. Catal., 94 (1985) 547.

    Article  Google Scholar 

  19. H. Ceylan, A. Yıldız and Y. Sarıkaya, Turk. J. Chem., 17 (1993) 267.

    CAS  Google Scholar 

  20. R. C. Joshi, G. Achari, D. Horfield and T. S. Nagaraj, J. Geotech. Eng. ASCE, 120 (1994) 1080.

    Article  Google Scholar 

  21. M. Chorom and P. Rengasamy, Clays Clay Miner., 44 (1996) 783.

    Article  CAS  Google Scholar 

  22. A. Neaman, M. Pelletier and F. Willieras, Appl. Clay Sci., 22 (2003) 153.

    Article  CAS  Google Scholar 

  23. V. Balek, Z. Malék, S. Yariv and G. Matuschek, J. Therm. Anal. Cal., 56 (1999) 67.

    Article  CAS  Google Scholar 

  24. E. Kristóf-Makó and A. Z. Juhász, Thermochim. Acta, 342 (1999) 105.

    Article  Google Scholar 

  25. M. V. Kök and W. Smykatz-Kloss, J. Therm. Anal. Cal., 64 (2001) 1271.

    Article  Google Scholar 

  26. V. Hlavatý and V. S. Fajnor, J. Therm. Anal. Cal., 67 (2002) 113.

    Article  Google Scholar 

  27. M. V. Kök, Energy Sources, 24 (2002) 899.

    Article  CAS  Google Scholar 

  28. M. V. Kök, Energy Sources, 26 (2004) 145.

    Article  CAS  Google Scholar 

  29. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd Ed., Academic Press, London 1982.

    Google Scholar 

  30. J. M. Adams, Appl. Clay Sci., 2 (1987) 309.

    Article  CAS  Google Scholar 

  31. Z. Ge, D. Li and T. J. Pinnavaia, Microporous Mater., 3 (1994) 165.

    Article  CAS  Google Scholar 

  32. P. Kumar, R. V. Jasra and T. S. G. Bhat, Ind. Eng. Chem. Res., 34 (1995) 1440.

    Article  CAS  Google Scholar 

  33. D. R. Brown and C. N. Rhodes, Catal. Lett., 45 (1997a) 35.

    Article  CAS  Google Scholar 

  34. M. Önal, Y. Sarıkaya, T. Alemdaroğlu and İ. Bozdoğan, Turk. J. Chem., 27 (2003) 683.

    Google Scholar 

  35. Y. Sarıkaya, M. Önal, B. Baran and T. Alemdaroğlu, Clays Clay Miner., 48 (2000) 557.

    Article  Google Scholar 

  36. T. Alemdaroğlu, G. Akkuş, M. Önal and Y. Sarıkaya, Turk. J. Chem., 27 (2003) 675.

    Google Scholar 

  37. H. Noyan, M. Önal and Y. Sarıkaya, Clays Clay Miner., 54 (2006) 377.

    Article  CAS  Google Scholar 

  38. N. Yıldız, Y. Sarıkaya and A. Çalımlı, Appl. Clay Sci., 14 (1999) 319.

    Article  Google Scholar 

  39. M. Önal, Y. Sarıkaya, T. Alemdaroğlu and İ. Bozdoğan, Turk. J. Chem., 26 (2002) 409.

    Google Scholar 

  40. N. A. Talvitie, Anal. Chem., 23 (1951) 623.

    Article  CAS  Google Scholar 

  41. J. M. Elzea, J. E. Odom and W. J. Miles, Anal. Chim. Acta, 286 (1994) 107.

    Article  CAS  Google Scholar 

  42. S. Kahraman, M. Önal, Y. Sarıkaya and İ. Bozdoğan, Anal. Chim. Acta, 552 (2005) 201.

    Article  CAS  Google Scholar 

  43. Y. Sarıkaya and S. Aybar, Commun. Fac. Sci. Uni. Ank., 24B (1978) 33.

    Google Scholar 

  44. Y. Sarıkaya, İ. Sevinç and M. Akinç, Powder Technol., 116 (2001) 109.

    Article  Google Scholar 

  45. M. Gal, J. Thermal Anal., 37 (1991) 1621.

    Article  CAS  Google Scholar 

  46. A. Acosta, I. Iglesias, M. Aineto, M. Romero and J. Ma. Rincón, J. Therm. Anal. Cal., 67 (2002) 249.

    Article  CAS  Google Scholar 

  47. H. Zou, M. Li, J. Shen and A. Auroux, J. Therm. Anal. Cal., 72 (2003) 209.

    Article  CAS  Google Scholar 

  48. A. Fodor, L. Ghizdavu, A. Suteu and A. Caraban, J. Therm. Anal. Cal., 75 (2004) 153.

    Article  CAS  Google Scholar 

  49. J. Ma. Rincón, M. Romero, A. Hidalgo and Ma. J. Liso, J. Therm. Anal. Cal., 76 (2004) 903.

    Article  Google Scholar 

  50. N. Yener, M. Önal, G. Üstünışık and Y. Sarıkaya, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-005-7459-0.

  51. H. Bayram, M. Önal, G. Üstünışık and Y. Sarıkaya, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-006-7561-y.

  52. S. Brunauer, L. S. Deming, D. M. Deming and E. Teller, J. Am. Chem. Soc., 62 (1940) 1723.

    Article  CAS  Google Scholar 

  53. F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powder and Porous Solids, Academic Press, London 1999.

    Google Scholar 

  54. B. G. Linsen, Physical and Chemical Aspects of Adsorbent and Catalysts, Academic Press, London 1970.

    Google Scholar 

  55. S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60 (1938) 308.

    Article  Google Scholar 

  56. A. L. McClellan and H. F. Hornsberger, J. Colloid Interface Sci., 23 (1967) 577.

    Article  CAS  Google Scholar 

  57. D. H. Everett, G. D. Parfitt, K. S. W. Sing and R. Wilson, J. Appl. Chem. Biotechnol., 24 (1974) 199.

    Article  CAS  Google Scholar 

  58. A. U. Doğan, M. Doğan, M. Önal, Y. Sarıkaya, A. Aburub and D. E. Wurster, Clays Clay Miner., 54 (2006) 62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Önal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Önal, M., Sarıkaya, Y. Thermal behavior of a bentonite. J Therm Anal Calorim 90, 167–172 (2007). https://doi.org/10.1007/s10973-005-7799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7799-9

Keywords

Navigation