Skip to main content
Log in

Thermogravimetric study of kerosene-doped gasoline

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Motor gasoline must present characteristics that guarantee its quality and the good performance of internal combustion engines without harming the environment. The contamination of gasoline by solvents can seriously adulterate its physical-chemical properties and affect its volatility and detonation capacity. To investigate organic solvent adulteration in gasoline samples, thermal analysis technique (TG/DTG) can be used as an auxiliary tool in the study of the thermal behavior of liquid fuels, as demonstrated by the present work involving a comparative analysis of kerosene-free and doped gasoline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petróleo Brasileiro S/A., Manual de Produtos de Petróleo, Petrobrás, Centro de Pesquisas e Desenvolvimento Leopoldo Miguel deMello (CENPES), Rio de Janeiro 1990.

  2. ANP (Agência Nacional do Petróleo), avaiable at: http://www.anp.gov.br, accessed at June 13, 2004.

  3. GW Castellan et al. (1972) Physical Chemistry, 2nd Ed. Addison-Wesley Reading

    Google Scholar 

  4. ASTM D86-99a, Standard Method for Distillation of Petroleum Products at Atmospheric Pressure; ASTM International, 1987.

  5. MS Rocha JR Simões-Moreira (2005) Fuel 84 447 Occurrence Handle10.1016/j.fuel.2004.09.011 Occurrence Handle1:CAS:528:DC%2BD2MXisFOj

    Article  CAS  Google Scholar 

  6. A Zanier (2001) J. Therm. Anal. Cal. 64 377 Occurrence Handle10.1023/A:1011586407704 Occurrence Handle1:CAS:528:DC%2BD3MXktFyjt74%3D

    Article  CAS  Google Scholar 

  7. FS Oliveira LSG Teixeira MCU Araujo M Kom (2004) Fuel 83 917 Occurrence Handle10.1016/j.fuel.2003.09.018

    Article  Google Scholar 

  8. N Kosal A Bhairi MA Ali (1990) Fuel 68 1012 Occurrence Handle10.1016/0016-2361(90)90013-G

    Article  Google Scholar 

  9. J Burri R Crockett R Hany D Rentsch (2004) Fuel 83 187 Occurrence Handle10.1016/S0016-2361(03)00261-8 Occurrence Handle1:CAS:528:DC%2BD3sXnsF2quro%3D

    Article  CAS  Google Scholar 

  10. LSM Wiedemann LA d’Avila DA Azevedo (2005) Fuel 84 467 Occurrence Handle10.1016/j.fuel.2004.09.013 Occurrence Handle1:CAS:528:DC%2BD2MXisFOg

    Article  CAS  Google Scholar 

  11. T Lanzer O F Meien CI Yamamoto (2005) Fuel 84 1099 Occurrence Handle10.1016/j.fuel.2005.01.017 Occurrence Handle1:CAS:528:DC%2BD2MXisFamsLw%3D

    Article  CAS  Google Scholar 

  12. ML Felsner JR Matos Jr. (1988) Anais da ABQ 47 308

    Google Scholar 

  13. GD Christian JE O’Reilly et al. (1986) Instrumental Analysis Allyn and Bacon Inc. Boston

    Google Scholar 

  14. RF Speyer et al. (1994) Thermal Analysis of Materials Marcel Dekker Inc. New York

    Google Scholar 

  15. RF Schwenker PD Garn et al. (1972) Thermal Analysis-Proceedings of Second International Conference on Thermal Analysis, Vol. 1 and 2 Academic Press New York

    Google Scholar 

  16. WW Wendlandt et al. (1986) Thermal Analysis, 3rd Ed. John Wiley & Sons New York

    Google Scholar 

  17. T Hatakeyama Z Liu et al. (1998) Handbook of Thermal Analysis John Wiley & Sons Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, M.M., Yoshida, M.I., Fortes, I.C.P. et al. Thermogravimetric study of kerosene-doped gasoline. J Therm Anal Calorim 87, 499–503 (2007). https://doi.org/10.1007/s10973-005-7457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7457-2

Keywords

Navigation