Skip to main content
Log in

Thermal analysis (TG-DTA) and drift spectroscopy applied to investigate the evolution of humic acids in forest soil at different vegetation stages

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Humic acids (HAs) extracted from soils developed under two Norwegian spruce (Picea abies, (L.) Karst) subalpine forests of northern Italy were characterized using chemical, thermal (TG-DTA) and spectroscopic (DRIFT) analyses. The samples were taken from five sites which differed in orientation (northern and southern exposure) and vegetal cover at different old age: grassland, regeneration, immature and mature stands. In general, the thermal patterns of HAs were similar (three exothermic reactions appeared around at 300, 400 and 500°C) in both sites in grasslands and regeneration while a considerable modification appeared in HA from stands of different age at northern and southern exposure site. DRIFT spectroscopy confirmed the differences observed through TG-DTA analysis. In particular the main structural changes were ascribed to modification of carbonyl group and of CH stretching in aliphatic components in each HAs from different sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H Keith RJ Raison KL Jacobsen ( 1997 ) Plant Soil 196 81 Occurrence Handle10.1023/A:1004286030345

    Article  Google Scholar 

  2. RT Aggangan AM O'Connell JF McGrath B Dell (1998) Soil Biol. Biochem. 30 1791 Occurrence Handle10.1016/S0038-0717(98)00045-5 Occurrence Handle1:CAS:528:DyaK1cXlt1Sksbk%3D

    Article  CAS  Google Scholar 

  3. JO Skjemstad LJ Janik JA Taylor ( 1998) Austr. J. Exp. Agric. 38 667

    Google Scholar 

  4. RC Turner M Schnitzer (1962) Soil Sci. 93 225 Occurrence Handle1:CAS:528:DyaF3sXkslOksbk%3D

    CAS  Google Scholar 

  5. M Schnitzer RC Turner I Hoffman (1964) Can. J. Soil Sci. 44 7 Occurrence Handle1:CAS:528:DyaF2MXktlyjur8%3D

    CAS  Google Scholar 

  6. P Leinweber HR Schulten (1992) Thermochim. Acta 200 151 Occurrence Handle10.1016/0040-6031(92)85112-9 Occurrence Handle1:CAS:528:DyaK38XlslSiu7c%3D

    Article  CAS  Google Scholar 

  7. HR Schulten P Leinweber (1999) Eur. J. Soil Sci. 50 237

    Google Scholar 

  8. N Ahmed C Varadachari K Ghosh (2002) Austr. J. Soil Res. 40 705 Occurrence Handle1:CAS:528:DC%2BD38XlslClurY%3D

    CAS  Google Scholar 

  9. MJ Jones AW Harding SD Brown KM Thomas (1995 ) Carbon 33 833 Occurrence Handle1:CAS:528:DyaK2MXms1ahs7g%3D

    CAS  Google Scholar 

  10. JA Varey CJ Hindmarsh KT Thomas (1996 ) Fuel 75 164 Occurrence Handle10.1016/0016-2361(95)00140-9 Occurrence Handle1:CAS:528:DyaK28XhtFWqtLs%3D

    Article  CAS  Google Scholar 

  11. S Çetinkaya Y Yürüm (2000 ) Fuel Process. Technol. 67 177

    Google Scholar 

  12. BK Mazumdar (2000 ) Fuel 79 1267 Occurrence Handle1:CAS:528:DC%2BD3cXktl2ru70%3D

    CAS  Google Scholar 

  13. B Grisi C Grace PC Brookes A Benedetti MT Dell'Abate (1998) Soil Biol. Biochem. 30 1309 Occurrence Handle10.1016/S0038-0717(98)00016-9 Occurrence Handle1:CAS:528:DyaK1cXkslCmsLw%3D

    Article  CAS  Google Scholar 

  14. MT Dell'Abate A Benedetti A Trinchera C Dazzi (2002) Geoderma 107 281. Occurrence Handle10.1016/S0016-7061(01)00153-7

    Article  Google Scholar 

  15. J Kučerik J Kovář M Pekař (2004) J. Therm. Anal. Cal. 76 55

    Google Scholar 

  16. O Francioso D Montecchio P Gioacchini C Ciavatta (2005 ) Appl. Geochem. 20 537 Occurrence Handle10.1016/j.apgeochem.2004.10.003 Occurrence Handle1:CAS:528:DC%2BD2MXhtVKit7c%3D

    Article  CAS  Google Scholar 

  17. MR Provenzano N Senesi (1999) J. Therm. Anal. Cal. 57 517 Occurrence Handle10.1023/A:1010176326691 Occurrence Handle1:CAS:528:DyaK1MXntFyhsbs%3D

    Article  CAS  Google Scholar 

  18. MT Dell'Abate S Canali A Trinchera A Benedetti P Sequi (2000) J. Therm. Anal. Cal. 61 389

    Google Scholar 

  19. Y Inbar Y Chen Y Hadar (1989) Soil Sci. Soc. Am. J. 53 1695 Occurrence Handle1:CAS:528:DyaK3cXnsFymuw%3D%3D

    CAS  Google Scholar 

  20. G Haberhauver MH Gerzabek (1999) Vib. Spectrosc. 19 413

    Google Scholar 

  21. O Francioso S Sánchez-Cortés V Tugnoli C Marzadori C Ciavatta (2001) J.Mol. Struct. 565 481 Occurrence Handle10.1016/S0022-2860(00)00905-4

    Article  Google Scholar 

  22. PR Griffiths JM Olinger (2002) Handbook of Vibrational Spectroscopy, Vol. 2, Wiley and Sons Chichester 1125

    Google Scholar 

  23. P Kubelka F Munk (1931) Z. Tech. Phys. 11 593

    Google Scholar 

  24. C Ciavatta M Govi L Vittori Antisari P Sequi (1989) Commun. Soil Sci. Plant Anal. 20 759 Occurrence Handle1:CAS:528:DyaL1MXksFKgt7o%3D

    CAS  Google Scholar 

  25. C Ciavatta M Govi L Vittori Antisari P Sequi (1991) Commun. Soil Sci. Plant Anal. 22 795 Occurrence Handle1:CAS:528:DyaK3MXltlCqtr4%3D

    CAS  Google Scholar 

  26. JD Sheppard DW Forgeron (1987) Fuel 66 232 Occurrence Handle10.1016/0016-2361(87)90247-X Occurrence Handle1:CAS:528:DyaL2sXhtVGitLw%3D

    Article  CAS  Google Scholar 

  27. B. Allard, Geoderma, (2005) ( in press)

  28. FJ Stevenson (1994) Humus Chemistry: Genesis, Composition, Reactions Wiley, Interscience New York

    Google Scholar 

  29. J Peuravouri N Paaso K Pihlaja (1999) Thermochim. Acta 325 181

    Google Scholar 

  30. CI Czmeczik CM Preston MWI Schmidt ED Schulze (2003 ) Glob. Biogeochem. Cycl. 17 1020

    Google Scholar 

  31. CNR Rao (1963) Chemical applications of infrared spectroscopy Academic Press New York

    Google Scholar 

  32. N Gressel Y Inbar A Singer Y Chen (1995) Soil Biol. Biochem. 27 23 Occurrence Handle10.1016/0038-0717(94)00139-R Occurrence Handle1:CAS:528:DyaK2MXjtFOisLo%3D

    Article  CAS  Google Scholar 

  33. O Francioso S Sánchez-Cortés V Tugnoli C Ciavatta L Sitti C Gessa (1996 ) Appl. Spectrosc. 50 1165 Occurrence Handle10.1366/0003702963905169 Occurrence Handle1:CAS:528:DyaK28Xlsl2htb8%3D

    Article  CAS  Google Scholar 

  34. J Niemeyer Y Chen JM Bollag (1992) Soil Sci. Soc. Am. J. 56 135 Occurrence Handle1:CAS:528:DyaK38XitFenu7c%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francioso O .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montecchio, D., Francioso, O., Carletti, P. et al. Thermal analysis (TG-DTA) and drift spectroscopy applied to investigate the evolution of humic acids in forest soil at different vegetation stages. J Therm Anal Calorim 83, 393–399 (2006). https://doi.org/10.1007/s10973-005-7292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7292-5

Keywords

Navigation