Skip to main content
Log in

What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This critical survey argues that the theory, conventionally used to interpret kinetic data measured for thermal reactions of initially solid reactants, is not always suitable for elucidating reaction chemistry and mechanisms or for identifying reactivity controls. Studies of solid-state decompositions published before the 1960s usually portrayed the reaction rate as determined by Arrhenius type models closely related to those formulated for homogeneous rate processes, though scientific justifications for these parallels remained incompletely established. Since the 1960s, when thermal analysis techniques were developed, studies of solid-state decompositions contributed to establishment of the new experimental techniques, but research interest became redirected towards increasing the capabilities of automated equipment to collect, to store and later to analyze rate changes for selected reactions. Subsequently, much less attention has been directed towards chemical features of the rate processes studied, which have included a range of reactants that is much more diverse than the simple solid-state reactions with which early thermokinetic studies were principally concerned. Moreover, the theory applied to these various reactants does not recognize the possible complexities of behaviour that may include mechanisms involving melting and/or concurrent/consecutive reactions, etc. The situation that has arisen following, and attributable to, the eclipse of solid-state decomposition studies by thermal analysis, is presented here and the consequences critically discussed in a historical context. It is concluded that methods currently used for kinetic and mechanistic investigations of all types of thermal reactions indiscriminately considered by the same, but inadequate theory, are unsatisfactory. Urgent and fundamental reappraisal of the theoretical foundations of thermokinetic chemical studies is now necessary and overdue.

While there are important, but hitherto unrecognized, delusions in thermokinetic methods and theories, an alternative theoretical explanation that accounts for many physical and chemical features of crystolysis reactions has been proposed. However, this novel but general model for the thermal behaviour and properties of solids has similarly remained ignored by the thermoanalytical community. The objective of this article is to emphasize the now pressing necessity for an open debate between these unreconciled opinions of different groups of researchers. The ethos of science is that disagreement between rival theories can be resolved by experiment and/or discussion, which may also strengthen the foundations of the subject in the process. As pointed out below, during recent years there has been no movement towards attempting to resolve some fundamental differences of opinion in a field that lacks an adequate theory. This should be unacceptable to all concerned. Here some criticisms are made of specific features of the alternative reaction models available with the stated intention of provoking a debate that might lead to identification of the significant differences between the currently irreconciled views. This could, of course, attract the displeasure of both sides, who will probably criticise me severely. Because I intend to retire completely from this field soon, it does not matter to me if I am considered to be ‘wrong’, if it contributes to us all eventually agreeing to get the science ‘right’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AK Galwey ME Brown et al. (1999) Thermal Decomposition of Ionic Solids Elsevier Amsterdam

    Google Scholar 

  2. ME Brown (2005) J. Therm. Anal. Cal. 82 665 Occurrence Handle1:CAS:528:DC%2BD28XjsFCqtg%3D%3D Occurrence Handle10.1007/s10973-005-0947-4

    Article  CAS  Google Scholar 

  3. AK Galwey ME Brown (2000) J. Therm. Anal. Cal. 60 863 Occurrence Handle1:CAS:528:DC%2BD3cXlslCgurw%3D Occurrence Handle10.1023/A:1010107724523

    Article  CAS  Google Scholar 

  4. AK Galwey (2000) Thermochim. Acta 355 181 Occurrence Handle1:CAS:528:DC%2BD3cXktVSjsrY%3D Occurrence Handle10.1016/S0040-6031(00)00448-2

    Article  CAS  Google Scholar 

  5. AK Galwey (2004) Thermochim. Acta 413 139 Occurrence Handle1:CAS:528:DC%2BD2cXhsVOntrY%3D Occurrence Handle10.1016/j.tca.2003.10.013

    Article  CAS  Google Scholar 

  6. AK Galwey (2003) Thermochim. Acta 407 93 Occurrence Handle1:CAS:528:DC%2BD3sXovVegs7s%3D Occurrence Handle10.1016/S0040-6031(03)00307-1

    Article  CAS  Google Scholar 

  7. AK Galwey (2003) Thermochim. Acta 399 1 Occurrence Handle1:CAS:528:DC%2BD3sXhvV2gu7c%3D Occurrence Handle10.1016/S0040-6031(02)00465-3

    Article  CAS  Google Scholar 

  8. AK Galwey (2003) Thermochim. Acta 397 249 Occurrence Handle1:CAS:528:DC%2BD3sXltlWjug%3D%3D Occurrence Handle10.1016/S0040-6031(02)00271-X

    Article  CAS  Google Scholar 

  9. ME Brown AK Galwey (2002) Thermochim. Acta 387 173 Occurrence Handle1:CAS:528:DC%2BD38Xjtlyjurk%3D Occurrence Handle10.1016/S0040-6031(01)00841-3

    Article  CAS  Google Scholar 

  10. KJ Laidler et al. (1963) Reaction Kinetics, Vol. 1, Homogeneous Gas Reactions Pergamon Press Oxford Ch. 2

    Google Scholar 

  11. KJ Laidler (1984) J. Chem. Ed. 61 494 Occurrence Handle1:CAS:528:DyaL2cXktlOktr0%3D Occurrence Handle10.1021/ed061p494

    Article  CAS  Google Scholar 

  12. KJ Laidler et al. (1987) Chemical Kinetics, Vol. 1, Homogeneous Gas Reactions, 3rd Ed. HarperCollins New York Ch. 2

    Google Scholar 

  13. G. Fleck, in: Nobel Laureates in Chemistry 1901–1992, Ed. L. K. James, Amer. Chem. Soc. Chem. Heritage Found., 1993, pp. 15–20.

  14. ‘Arrhenius’, The New Hutchinson Encyclopedia, Helicon Publ., Tyne and Wear, 1993, p. 51.

  15. KJ Laidler et al. (1987) Chemical Kinetics, Vol. 1, Homogeneous Gas Reactions, 3rd Ed. HarperCollins New York Ch. 3

    Google Scholar 

  16. PW Atkins et al. (1996) Physical Chemistry, 5th Ed. W. H. Freeman New York Ch. 27

    Google Scholar 

  17. KJ Laidler et al. (1987) Chemical Kinetics, Vol. 2, Reactions in Solution, 3rd Ed. HarperCollins New York Ch. 1

    Google Scholar 

  18. PD Garn (1975) J. Thermal Anal. 7 475 Occurrence Handle1:CAS:528:DyaE2MXktFKnt7c%3D Occurrence Handle10.1007/BF01911956

    Article  CAS  Google Scholar 

  19. PD Garn (1976) J. Thermal Anal. 10 99 Occurrence Handle1:CAS:528:DyaE28XlvVarurk%3D Occurrence Handle10.1007/BF02179195

    Article  CAS  Google Scholar 

  20. PD Garn (1978) J. Thermal Anal. 13 581 Occurrence Handle1:CAS:528:DyaE1cXls12lt74%3D Occurrence Handle10.1007/BF01912397

    Article  CAS  Google Scholar 

  21. PD Garn (1988) Thermochim. Acta 135 71 Occurrence Handle1:CAS:528:DyaL1MXmsVentQ%3D%3D Occurrence Handle10.1016/0040-6031(88)87368-4

    Article  CAS  Google Scholar 

  22. PD Garn (1990) Thermochim. Acta 160 135 Occurrence Handle1:CAS:528:DyaK3cXkt12qtbk%3D Occurrence Handle10.1016/0040-6031(90)80254-V

    Article  CAS  Google Scholar 

  23. AK Galwey ME Brown (1995) Proc. R. Soc. London A450 501

    Google Scholar 

  24. AK Galwey ME Brown (2002) Thermochim. Acta 386 91 Occurrence Handle1:CAS:528:DC%2BD38XitFeqsLY%3D Occurrence Handle10.1016/S0040-6031(01)00769-9

    Article  CAS  Google Scholar 

  25. AK Galwey (1994) Thermochim. Acta 242 259 Occurrence Handle1:CAS:528:DyaK2cXlvVyns7g%3D Occurrence Handle10.1016/0040-6031(94)85030-5

    Article  CAS  Google Scholar 

  26. AK Galwey R Spinicci GGT Guarini (1981) Proc. R. Soc. London A378 477

    Google Scholar 

  27. ME Brown AK Galwey D Dollimore et al. (1980) Comprehensive Chemical Kinetics, Vol. 22 Elsevier Amsterdam

    Google Scholar 

  28. CEH Bawn et al. (1955) Chemistry of the Solid State Butterworth London Ch. 10

    Google Scholar 

  29. NJ Carr AK Galwey (1986) Proc. R. Soc. London A404 101

    Google Scholar 

  30. AK Galwey L Pöppl S Rajam (1983) J. Chem. Soc., Faraday Trans. I 79 2143 Occurrence Handle1:CAS:528:DyaL3sXmtVGjur8%3D Occurrence Handle10.1039/f19837902143

    Article  CAS  Google Scholar 

  31. AK Galwey MA Mohamed (1986) Proc. R. Soc. London A396 425

    Google Scholar 

  32. AK Galwey GM Laverty (1993) Proc. R. Soc. London A440 77

    Google Scholar 

  33. AK Galwey (1977) Adv. Catal. 26 247 Occurrence Handle1:CAS:528:DyaE2sXht1Oqs7g%3D Occurrence Handle10.1016/S0360-0564(08)60072-3

    Article  CAS  Google Scholar 

  34. AK Galwey M Mortimer (2006) Internat. J. Chem. Kinet. 38 464 Occurrence Handle1:CAS:528:DC%2BD28XlvFCnsbo%3D Occurrence Handle10.1002/kin.20176

    Article  CAS  Google Scholar 

  35. JM Criado LA Perez-Maqueda PE Sanchez-Jimenez (2005) J. Therm. Anal. Cal. 82 671 Occurrence Handle1:CAS:528:DC%2BD28XjsFCqtA%3D%3D Occurrence Handle10.1007/s10973-005-0948-3

    Article  CAS  Google Scholar 

  36. VV Boldyrev (2002) Thermochim. Acta 388 63 Occurrence Handle1:CAS:528:DC%2BD38Xkt1emurY%3D Occurrence Handle10.1016/S0040-6031(02)00044-8

    Article  CAS  Google Scholar 

  37. N Koga H Tanaka (2005) J. Therm. Anal. Cal. 82 725 Occurrence Handle1:CAS:528:DC%2BD28XjsFGisQ%3D%3D Occurrence Handle10.1007/s10973-005-0956-3

    Article  CAS  Google Scholar 

  38. N Koga (2005) J. Therm. Anal. Cal. 81 596 Occurrence Handle10.1007/s10973-005-0830-3 Occurrence Handle1:CAS:528:DC%2BD2MXpvVajsbY%3D

    Article  CAS  Google Scholar 

  39. AA Christy E Nodland AK Burnham OM Kvalheim B Dahl (1994) Appl. Spectrosc. 48 561 Occurrence Handle1:CAS:528:DyaK2cXksVeqs74%3D Occurrence Handle10.1366/0003702944924916

    Article  CAS  Google Scholar 

  40. AK Galwey GGT Guarini (1993) Proc. R. Soc. London A441 313

    Google Scholar 

  41. FH Herbstein M Kapon A Weissman (1991) J. Thermal Anal. 41 303

    Google Scholar 

  42. AK Galwey MA Mohamed (1994) Thermochim. Acta 239 211 Occurrence Handle1:CAS:528:DyaK2cXlsValu7s%3D Occurrence Handle10.1016/0040-6031(94)87068-3

    Article  CAS  Google Scholar 

  43. M. E. Brown, Introduction to Thermal Analysis, Chapman and Hall, London 1988, 2nd Ed., Kluwer, Dordrecht 2001.

  44. JM Criado A Ortega (1984) J. Thermal Anal. 29 1225 Occurrence Handle1:CAS:528:DyaL2MXkt1yjsLk%3D Occurrence Handle10.1007/BF02188860

    Article  CAS  Google Scholar 

  45. FJ Gotor JM Criado J Malek N Koga (2000) J. Phys. Chem. A 104 10777 Occurrence Handle1:CAS:528:DC%2BD3cXnsV2lsrk%3D Occurrence Handle10.1021/jp0022205

    Article  CAS  Google Scholar 

  46. P Šimon (2005) J. Therm. Anal. Cal. 82 651 Occurrence Handle10.1007/s10973-005-0945-6 Occurrence Handle1:CAS:528:DC%2BD28XjsFCqsw%3D%3D

    Article  CAS  Google Scholar 

  47. BA Howell JA Ray (2006) J. Therm. Anal. Cal. 83 63 Occurrence Handle1:CAS:528:DC%2BD28XitF2nsb0%3D Occurrence Handle10.1007/s10973-005-7251-1

    Article  CAS  Google Scholar 

  48. N Liu H Chen L Shu M Statheropoulos (2005) J. Therm. Anal. Cal. 81 99 Occurrence Handle1:CAS:528:DC%2BD2MXlslOlsb8%3D Occurrence Handle10.1007/s10973-005-0751-1

    Article  CAS  Google Scholar 

  49. JH Flynn (1997) Thermochim. Acta 300 83 Occurrence Handle1:CAS:528:DyaK2sXlslWisrc%3D Occurrence Handle10.1016/S0040-6031(97)00046-4

    Article  CAS  Google Scholar 

  50. WE Garner et al. (1955) Chemistry of the Solid State Butterworth London Ch. 8 p. 217

    Google Scholar 

  51. BV L’vov AV Novichikhin AO Dyakov (1998) Thermochim. Acta 315 135 Occurrence Handle1:CAS:528:DyaK1cXis1ahuro%3D Occurrence Handle10.1016/S0040-6031(97)00404-8

    Article  CAS  Google Scholar 

  52. BV L’vov (2001) Thermochim. Acta 373 97 Occurrence Handle1:CAS:528:DC%2BD3MXktV2gtb0%3D Occurrence Handle10.1016/S0040-6031(01)00507-X

    Article  CAS  Google Scholar 

  53. BV L’vov (2002) Thermochim. Acta 386 1 Occurrence Handle1:CAS:528:DC%2BD38XitFeqs7k%3D Occurrence Handle10.1016/S0040-6031(01)00757-2

    Article  CAS  Google Scholar 

  54. BV L’vov (2006) J. Therm. Anal. Cal. 84 581 Occurrence Handle1:CAS:528:DC%2BD28XlvV2hu7k%3D Occurrence Handle10.1007/s10973-005-9992-2

    Article  CAS  Google Scholar 

  55. BV L’vov VL Ugolkov (2003) J. Therm. Anal. Cal. 74 697 Occurrence Handle1:CAS:528:DC%2BD2cXhtFOrtA%3D%3D Occurrence Handle10.1023/B:JTAN.0000011002.06238.97

    Article  CAS  Google Scholar 

  56. BV L’vov LK Polzik VL Ugolkov (2002) Thermochim. Acta 390 5 Occurrence Handle1:CAS:528:DC%2BD38XkslCku7k%3D Occurrence Handle10.1016/S0040-6031(02)00080-1

    Article  CAS  Google Scholar 

  57. S Vyazovkin (2000) Int. Rev. Phys. Chem. 19 45 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Gitbg%3D Occurrence Handle10.1080/014423500229855

    Article  CAS  Google Scholar 

  58. BV L’vov (2004) Thermochim. Acta 424 183 Occurrence Handle1:CAS:528:DC%2BD2cXovVCkt7k%3D Occurrence Handle10.1016/j.tca.2004.05.012

    Article  CAS  Google Scholar 

  59. BV L’vov (2002) Thermochim. Acta 389 199 Occurrence Handle1:CAS:528:DC%2BD38Xkt1emtbs%3D Occurrence Handle10.1016/S0040-6031(02)00013-8

    Article  CAS  Google Scholar 

  60. AK Galwey PWM Jacobs (1959) J. Chem. Soc. 1 837 Occurrence Handle10.1039/jr9590000837

    Article  Google Scholar 

  61. A. K. Galwey, J. Therm. Anal. Cal., accepted.

  62. AK Galwey (2005) J. Therm. Anal. Cal. 79 219 Occurrence Handle1:CAS:528:DC%2BD2MXhs1ahtbo%3D Occurrence Handle10.1007/s10973-004-0587-0

    Article  CAS  Google Scholar 

  63. AK Galwey (2005) J. Therm. Anal. Cal. 82 23 Occurrence Handle1:CAS:528:DC%2BD2MXht1KgsbnI Occurrence Handle10.1007/s10973-005-0888-y

    Article  CAS  Google Scholar 

  64. AK Galwey (2005) J. Therm. Anal. Cal. 82 423 Occurrence Handle1:CAS:528:DC%2BD2MXhtFyis7fK Occurrence Handle10.1007/s10973-005-0913-1

    Article  CAS  Google Scholar 

  65. A. K. Galwey, J. Therm. Anal. Cal., accepted, DOI: 10.1007/s10973-005-7399-8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Galwey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galwey, A.K. What theoretical and/or chemical significance is to be attached to the magnitude of an activation energy determined for a solid-state decomposition?. J Therm Anal Calorim 86, 267–286 (2006). https://doi.org/10.1007/s10973-005-7157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7157-y

Keywords

Navigation