Advertisement

Kinetics and molecular modeling of biologically active glutathione complexes with lead(II) ions

  • B. K. Singh
  • R. K. Sharma
  • B. S. Garg
Article

Abstract

Lead(II) complexes of reduced glutathione (GSH) of general composition [Pb(L)(X)]·H2O (where L=GSH; X=Cl, NO3, CH3COO, NCS) have been synthesized and characterized by elemental analyses, infrared spectra and electronic spectra. Thermogravimetric (TG) and differential thermal analytical (DTA) studies have been carried out for these complexes. Infrared spectra indicate deprotonation and coordination of cysteinyl sulphur with metal ion. It indicates the presence of water molecule in the complexes that has been supported by TG/DTA. The thermal behaviour of complexes shows that water molecule is removed in first step-followed removal of anions and then decomposition of the ligand molecule in the subsequent steps. Thermal decomposition of all the complexes proceeds via first order kinetics. The thermodynamic activation parameters, such as E*, A, ΔH*, ΔS* and ΔG* have been calculated. The geometry of the metal complexes has been studied with the help of molecular modeling for energy minimization calculation.

Keywords

differential thermal analysis glutathione lead(II) complexes thermodynamic activation parameters thermogravimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumar, DN, Garg, BS 2002J. Therm. Anal. Cal.69607CrossRefGoogle Scholar
  2. 2.
    Sharma, R, Kaushik, NK 2004J. Therm. Anal. Cal.78953Google Scholar
  3. 3.
    Jocelyn, PC 1972Biochemistry of the SH groupAcademic PressLondonGoogle Scholar
  4. 4.
    Verma, A, Simard, JM, Worall, JWE, Rotello, VM 2004J. Am. Chem. Soc.12613987CrossRefGoogle Scholar
  5. 5.
    Sugden, KD, Stearns, DM 2000J. Environ. Path Toxicol. Oncol.19215Google Scholar
  6. 6.
    Grabner, S, Kosmrlj, J, Bukovec, N, Cemazer, M 2003J. Inorg. Biochem.95105CrossRefGoogle Scholar
  7. 7.
    Rice, KP, Penketh, PG, Krishnamurthy, S, Sartorelli, AC 2005Biochem. Pharmcology691463CrossRefGoogle Scholar
  8. 8.
    Ang, WH, Khalaila, I, Allardyce, CS, Juillerat-Jeanneret, L, Dyson, PJ 2005J. Am. Chem. Soc.1271382CrossRefGoogle Scholar
  9. 9.
    Kojima, S, Nakayama, K, Ishida, H 2004J. Radiation Res.4533CrossRefGoogle Scholar
  10. 10.
    Ning, B, Wang, C, Morel, F, Nowell, S, Ratnasinghe, DL, Carter, W, Kadlubar, FF, Coles, B 2004Pharmacogenetics1435CrossRefGoogle Scholar
  11. 11.
    Kopanski, Z, Grabowska, M, Kosiniak-Kamysz, A, Bertrandt, J, Kolodziejski, L, Opoka, W, Schlegel-Zawadzka, M 2004Biofactors2279Google Scholar
  12. 12.
    Struzynska, L, Sulkowski, G, Lenkiewicz, A, Rafalowska, U 2002Folia Neuro-pathologica40203Google Scholar
  13. 13.
    K. Haraa, S. Ohmori, M. Nagano, Y. Kim and H. Miura, Proc. ICMR Semin. (1994) (Proceed of Asia-Pacific Symp. on Environ. and Occupational Health), (1993) 99.Google Scholar
  14. 14.
    Li, G, Jin, Y, Zhao, M, Liu, X, Chem, A, Xu, Z 2003Zhongguo Gongye Yixue Zazhi16163Google Scholar
  15. 15.
    Coats, AW, Redfern, JP 1964Nature20168Google Scholar
  16. 16.
    Zsakó, J 1968J. Phys. Chem.722406CrossRefGoogle Scholar
  17. 17.
    Singh, PK, Garg, BS, Kumar, DN, Singh, BK 2001Ind. J. Chem.40A139Google Scholar
  18. 18.
    Silver, J, Hamed, MY, Morrison, IEG 1985Inorg. Chim. Acta107169CrossRefGoogle Scholar
  19. 19.
    Domazetis, G, Magee, RJ, James, BD 1979J. Organomet. Chem.173357CrossRefGoogle Scholar
  20. 20.
    Silverstein, RM, Bassler, OG, Morrill, TC 1974Spectrophometric identification of organic compoundsWileyNew York108Google Scholar
  21. 21.
    Shindo, H, Brown, TL 1965J. Am. Chem. Soc.871904CrossRefGoogle Scholar
  22. 22.
    Deacon, GB, Phillips, RJ 1980Coord. Chem. Rev.33227CrossRefGoogle Scholar
  23. 23.
    Deacon, GB, Huber, F, Phillips, RJ 1985Inorg. Chem. Acta10441CrossRefGoogle Scholar
  24. 24.
    Nakamoto, K 1978Infrared and Raman spectra of inorganic and coordination compoundsWileyNew YorkGoogle Scholar
  25. 25.
    Rana, VB, Singh, DP, Singh, P, Teotia, MP 1981Transition Met. Chem.636CrossRefGoogle Scholar
  26. 26.
    Bailey, RA, Kozak, SL, Michelsen, TW, Mills, WN 1971Coord. Chem. Rev.6407CrossRefGoogle Scholar
  27. 27.
    Rao, CNR 1967Ultraviolet and visible spectroscopyButterworthLondon190Google Scholar
  28. 28.
    Nakamoto, K, McCarthy, SJ 1968Spectroscopy and structure of metal chelate compoundsJohn Wiley and SonsUSAGoogle Scholar
  29. 29.
    Akerfeldt, S, Lovgren, G 1964Anal. Biochem.8223CrossRefGoogle Scholar
  30. 30.
    Bendiab, H, Meullemeetre, J, Schwing, MJ, Vierling, F 1982J. Chem. Res.(S)280Google Scholar
  31. 31.
    Curell, BR 1969Thermal AnalysisAcademic PressNew York1185Eds, R. F. Schnenker and P. D. GarnGoogle Scholar
  32. 32.
    Hyperchem2005Release 7.51 Professional version for window, Molecular Modeling systemHyperchem. Inc.CanadaGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DelhiDelhiIndia

Personalised recommendations