Skip to main content
Log in

On the preparation of synthetic carbon adsorbents using the sulfonated ion exchange resin duolite C-20

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analysis was used to study thermal behavior of the sulfonated ion exchange resin Duolite C20 in the hydrogen, sodium and calcium forms. The aim of this paper was to prepare spherical carbon adsorbents. SEM and AFM microscopic methods have been applied to describe their surface characteristics. It was stated that structural parameters of prepared active carbons depend on the kind of cation present in the resin. The use of calcium form of Duolite C20 as the initial polymer precursor allowed to obtain the active carbon with better yield and better developed pore structure compared with other forms of this ion exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NT Kartel AM Puziy VV Strelko (1991.) in: Characterisation of Porous Solids, Elsevier Science Publisher, Amsterdam

    Google Scholar 

  2. VP Musakina TG Plachenov (1969) Zhurn. Prikl. Khimii 12 2756

    Google Scholar 

  3. K Miura J Hayashi K Hasimoto (1992) Carbon 30 946 Occurrence Handle1:CAS:528:DyaK38XlslCnsL0%3D Occurrence Handle10.1016/0008-6223(92)90021-N

    Article  CAS  Google Scholar 

  4. H Teng SC Wang (2000) Carbon 38 17 Occurrence Handle10.1016/S0008-6223(99)00160-8

    Article  Google Scholar 

  5. K Bratek W Bratek M Kułażyński (2002) Carbon 40 2213 Occurrence Handle1:CAS:528:DC%2BD38XmvVWhu74%3D Occurrence Handle10.1016/S0008-6223(02)00091-X

    Article  CAS  Google Scholar 

  6. W. Grzegorczyk, J. Skubiszewska-Zięba and R. Leboda, The recycling of ion-exchange resin for carbon sorbents, In: Abstract of 3rd Congress of Chemical Technology, Gliwice, Poland 2000, p. 185.

  7. A Gierak (1995) Mater. Chem. Phys. 41 128 Occurrence Handle10.1016/0254-0584(95)80017-4

    Article  Google Scholar 

  8. MA Dubois JF Dozol C Nicotra J Serose C Massiani (1995) J. Anal. Appl. Pyrolysis 31 129 Occurrence Handle1:CAS:528:DyaK2MXlsFCls7c%3D Occurrence Handle10.1016/0165-2370(94)00817-K

    Article  CAS  Google Scholar 

  9. T Kyotani (2000) Carbon 38 269 Occurrence Handle1:CAS:528:DC%2BD3cXhtVaktLc%3D Occurrence Handle10.1016/S0008-6223(99)00142-6

    Article  CAS  Google Scholar 

  10. K László A Bóta L-G Nagy I Cabasso (1999) Colloids Surf. A 151 311

    Google Scholar 

  11. S Villar-Rodil A Martinez-Alonzo JM Tascón (2005) J. Therm. Anal. Cal. 79 529 Occurrence Handle1:CAS:528:DC%2BD2MXisFynsb0%3D Occurrence Handle10.1007/s10973-005-0574-0

    Article  CAS  Google Scholar 

  12. JM Salla JM Morancho X Ramis A Cadenato (2005) J. Therm. Anal. Cal. 80 163 Occurrence Handle1:CAS:528:DC%2BD2MXktl2ksrc%3D Occurrence Handle10.1007/s10973-005-0630-9

    Article  CAS  Google Scholar 

  13. T Kojima M Tsuchija K Ishimaru T Yamada (2005) J. Therm. Anal. Cal. 80 137 Occurrence Handle1:CAS:528:DC%2BD2MXktl2ks7o%3D Occurrence Handle10.1007/s10973-005-0625-6

    Article  CAS  Google Scholar 

  14. L Degirmenci T Dumsoy (2005) J. Therm. Anal. Cal. 79 663 Occurrence Handle1:CAS:528:DC%2BD2MXisFyns7o%3D Occurrence Handle10.1007/s10973-005-0593-x

    Article  CAS  Google Scholar 

  15. AF Naves PM Kosaka JR Matos DFS Petri (2005) J. Therm. Anal. Cal. 79 389 Occurrence Handle1:CAS:528:DC%2BD2MXkt1Chs7k%3D Occurrence Handle10.1007/s10973-005-0071-5

    Article  CAS  Google Scholar 

  16. V Vargha Gy Kiss (2004) J. Therm. Anal. Cal. 76 295 Occurrence Handle1:CAS:528:DC%2BD2cXjvFSrs78%3D Occurrence Handle10.1023/B:JTAN.0000027828.81241.78

    Article  CAS  Google Scholar 

  17. SM Dakka (2004) J. Therm. Anal. Cal. 75 765 Occurrence Handle1:CAS:528:DC%2BD2cXjsValu7w%3D Occurrence Handle10.1023/B:JTAN.0000027172.41943.55

    Article  CAS  Google Scholar 

  18. R Leboda J Skubiszewska-Zięba VI Bogillo (1997) Langmuir 12 1211 Occurrence Handle10.1021/la951564x

    Article  Google Scholar 

  19. R Leboda J Skubiszewska-Zięba W Grzegorczyk (1998) Carbon 36 417 Occurrence Handle1:CAS:528:DyaK1cXktlWqurc%3D Occurrence Handle10.1016/S0008-6223(97)00221-2

    Article  CAS  Google Scholar 

  20. SJ Gregg KSW Sing (1982) Adsorption, Surface Area and Porosity Academic Press London

    Google Scholar 

  21. AW Adamson AP Gast (1997) Physical Chemistry of Surface Wiley New York

    Google Scholar 

  22. BC Lippens JH de Boer (1965) J. Catal. 4 319 Occurrence Handle1:CAS:528:DyaF2MXktVKqtr8%3D Occurrence Handle10.1016/0021-9517(65)90307-6

    Article  CAS  Google Scholar 

  23. EP Barrett LG Joyner PP Halenda (1951) J. Am. Chem. Soc. 73 373 Occurrence Handle1:CAS:528:DyaG3MXjsVygsg%3D%3D Occurrence Handle10.1021/ja01145a126

    Article  CAS  Google Scholar 

  24. C Nguyen DD Do (1999) Langmuir 15 3608 Occurrence Handle1:CAS:528:DyaK1MXisFGnurs%3D Occurrence Handle10.1021/la981140d

    Article  CAS  Google Scholar 

  25. SW Provencher (1982) Comp. Phys. Comm. 27 213 Occurrence Handle10.1016/0010-4655(82)90173-4

    Article  Google Scholar 

  26. VM Gun’ko DD Do (2001) Colloids Surf. A 193 71

    Google Scholar 

  27. VM Gun’ko SV Mikhalovsky (2004) Carbon 42 843 Occurrence Handle1:CAS:528:DC%2BD2cXitVynt7c%3D Occurrence Handle10.1016/j.carbon.2004.01.059

    Article  CAS  Google Scholar 

  28. VM Gun’ko VV Turov J Skubiszewska-Zięba B Charmas R Leboda (2004) Adsorption 10 5 Occurrence Handle1:CAS:528:DC%2BD2cXjtV2ktLg%3D Occurrence Handle10.1023/B:ADSO.0000024031.35721.c7

    Article  CAS  Google Scholar 

  29. V. B. Fenelonov, Porous Carbon, Novosibirsk 1995.

  30. KSW Sing DH Everett RAW Haul L Moscou RA Pierotti J Roquerol T Siemieniewska (1985) Pure Appl. Chem. 57 603 Occurrence Handle1:CAS:528:DyaL2MXhvFWrtb4%3D

    CAS  Google Scholar 

  31. J Roquerol D Avnir CW Fairbridge DH Everett JH Hayness N Pernicone JDF Ramsay KSW Sing KK Unger (1994) Pure Appl. Chem. 66 1739

    Google Scholar 

  32. R Leboda (1992) Mater. Chem. Phys. 31 243 Occurrence Handle1:CAS:528:DyaK38XktFSrt74%3D Occurrence Handle10.1016/0254-0584(92)90261-6

    Article  CAS  Google Scholar 

  33. R Leboda (1993) Mater. Chem. Phys. 34 123 Occurrence Handle1:CAS:528:DyaK3sXlt1Smsb8%3D Occurrence Handle10.1016/0254-0584(93)90202-W

    Article  CAS  Google Scholar 

  34. E Matisova E Skrabakova (1995) J. Chromatogr. 707 145 Occurrence Handle1:CAS:528:DyaK2MXntl2nsrc%3D Occurrence Handle10.1016/0021-9673(95)00347-P

    Article  CAS  Google Scholar 

  35. NanoScope Command Reference Manual Version 5. 12.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skubiszewska-Zięba, J., Leboda, R., Charmas, B. et al. On the preparation of synthetic carbon adsorbents using the sulfonated ion exchange resin duolite C-20. J Therm Anal Calorim 86, 187–194 (2006). https://doi.org/10.1007/s10973-005-7150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7150-5

Keywords

Navigation