Skip to main content
Log in

Phase transition induced bywater dilution in phospholipid U-type food-grade microemulsions studied by DSC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study we used differential scanning calorimetry to clarify the role of water activity within the nano-droplets, and to explore phase transitions in novel phospholipids based fully dilutable food-grade microemulsions.

The microstructure transitions were investigated along two water dilution lines (50:50 and 80:20 mass% surfactant mixture/oil phase). From the water thermal behavior we learned that three structural regions can be identified along the water dilution lines. The thermal transition points coincide with the structural phase transition of the microemulsions as measured by other methods (electrical conductivity and SD-NMR measurements).

The structural transitions were detected at 20 and 45 mass% of water along dilution line 55, where along dilution line 82 it occurs at 40 and 50 mass% of water.

The microemulsions along dilution line 82 seem to have more compact surfactant packing film, thus the film has stronger resistance to transformation upon dilution, resulting in a smaller bicontinuous region than the one formed at dilution line 55. The difference in phase transition point can be used for triggering the release of future solubilizate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F Podlogar M Gašperlin M Tomšič A Jamnik MB Rogač (2004) Int. J. Pharm. 276 115 Occurrence Handle10.1016/j.ijpharm.2004.02.018 Occurrence Handle1:CAS:528:DC%2BD2cXjtlyqu7g%3D

    Article  CAS  Google Scholar 

  2. A Yaghmur A Aserin B Antalek N Garti (2003) Langmuir 19 1063 Occurrence Handle10.1021/la026404h Occurrence Handle1:CAS:528:DC%2BD3sXktlWmtw%3D%3D

    Article  CAS  Google Scholar 

  3. O Regev S Ezrahi A Aserin N Garti E Wachtel EW Kaler A Khan Y Talmon (1996) Langmuir 12 668 Occurrence Handle1:CAS:528:DyaK28XjvFWrtg%3D%3D

    CAS  Google Scholar 

  4. L de Campo A Yaghmur N Garti ME Leser B Folmer O Glatter (2004) J. Colloid Interface Sci. 274 251 Occurrence Handle1:CAS:528:DC%2BD2cXjsFOgsbc%3D

    CAS  Google Scholar 

  5. M Tomšič MB Rogač A Jamnik W Kunz D Touraud A Bergmann O Glatter (2004) J. Phys. Chem. B 108 7021

    Google Scholar 

  6. N Garti A Aserin S Ezrahi I Tiunova G Berkovic (1996) J. Colloid Interface Sci. 178 60 Occurrence Handle10.1006/jcis.1996.0093 Occurrence Handle1:CAS:528:DyaK28Xhs1CmtL4%3D

    Article  CAS  Google Scholar 

  7. K Cieśla H Rahier G Zakrzeewska-Trznadel (2004) J. Therm. Anal. Cal. 77 279

    Google Scholar 

  8. K Tananuwong DS Reid (2004) J. Agric. Food Chem. 52 4308 Occurrence Handle10.1021/jf049960l Occurrence Handle1:CAS:528:DC%2BD2cXksFeltL0%3D

    Article  CAS  Google Scholar 

  9. A Raemy (2003) J. Therm. Anal. Cal. 71 273 Occurrence Handle10.1023/A:1022299124618 Occurrence Handle1:CAS:528:DC%2BD3sXptFygtw%3D%3D

    Article  CAS  Google Scholar 

  10. JFA Soltero JE Puig PC Schulz (1998) J. Thermal Anal. 51 105 Occurrence Handle1:CAS:528:DyaK1cXns1agtr4%3D

    CAS  Google Scholar 

  11. A Spernath A Yaghmur A Aserin RE Hoffman N Garti (2003) J. Agric. Food Sci. 51 2359 Occurrence Handle1:CAS:528:DC%2BD3sXitVemt7c%3D

    CAS  Google Scholar 

  12. J Koetz J Bahnenann S Kosmella (2004) J. Polym. Sci. Pol. Chem. 42 742 Occurrence Handle10.1002/pola.10808 Occurrence Handle1:CAS:528:DC%2BD2cXotFGktA%3D%3D

    Article  CAS  Google Scholar 

  13. G Xu L Zhang S Yuan X Huang G Li (2001) J. Dispersion Sci. Technol. 22 563 Occurrence Handle1:CAS:528:DC%2BD38Xjt1CktA%3D%3D

    CAS  Google Scholar 

  14. PC Schulz (1998) J. Thermal Anal. 51 135 Occurrence Handle1:CAS:528:DyaK1cXns1agtr0%3D

    CAS  Google Scholar 

  15. D Clausse (1998) J. Thermal Anal. 51 191 Occurrence Handle1:CAS:528:DyaK1cXns1agtrk%3D

    CAS  Google Scholar 

  16. D Vollmer J Vollmer R Strey HG Schmidt G Wolf (1998) J. Thermal Anal. 51 9 Occurrence Handle1:CAS:528:DyaK1cXns1ahsLg%3D

    CAS  Google Scholar 

  17. K Cieśla H Rahier G Zakrzewska-Trznadel (2004) J. Therm. Anal. Cal. 77 279

    Google Scholar 

  18. N Zajc S Srcic (2004) J. Therm. Anal. Cal. 77 571 Occurrence Handle10.1023/B:JTAN.0000038995.76480.74 Occurrence Handle1:CAS:528:DC%2BD2cXmvFSmtbo%3D

    Article  CAS  Google Scholar 

  19. A Raemy CA Nouzille P Frossard L Sagalowicz ME Leser (2005) J. Therm. Anal. Cal. 80 439 Occurrence Handle10.1007/s10973-005-0674-x Occurrence Handle1:CAS:528:DC%2BD2MXjvVCmsLY%3D

    Article  CAS  Google Scholar 

  20. D Senatra L Lendinara MG Giri (1991) Prog. Coll. Polym. Sci. 84 122 Occurrence Handle1:CAS:528:DyaK3MXmvVOktrc%3D

    CAS  Google Scholar 

  21. V Kocherbitov (2004) Thermochim. Acta 414 43 Occurrence Handle10.1016/j.tca.2003.11.011 Occurrence Handle1:CAS:528:DC%2BD2cXjsVKgt7o%3D

    Article  CAS  Google Scholar 

  22. S Ezrahi I Nir A Aserin N Kozlovich Y Feldman N Garti (2002) J. Dispersion Sci. Technol. 23 351 Occurrence Handle10.1081/DIS-120003325 Occurrence Handle1:CAS:528:DC%2BD38XkslWktb4%3D

    Article  CAS  Google Scholar 

  23. D Senatra (2000) Thermochim. Acta 345 39 Occurrence Handle10.1016/S0040-6031(99)00395-0 Occurrence Handle1:CAS:528:DC%2BD3cXpsFSisg%3D%3D

    Article  CAS  Google Scholar 

  24. A Yaghmur A Aserin I Tiunova N Garti (2002) J. Therm. Anal. Cal. 69 163 Occurrence Handle10.1023/A:1019997909346 Occurrence Handle1:CAS:528:DC%2BD38Xms1eltb4%3D

    Article  CAS  Google Scholar 

  25. HF Eicke W Meier H Hammerich (1994) Langmuir 10 2223 Occurrence Handle10.1021/la00019a032 Occurrence Handle1:CAS:528:DyaK2cXks1Kgtr4%3D

    Article  CAS  Google Scholar 

  26. S Ezrahi E Wachtel A Aserin N Garti (1997) J. Colloid Interface Sci. 191 277 Occurrence Handle10.1006/jcis.1997.4962 Occurrence Handle1:CAS:528:DyaK2sXlt1Kqsrc%3D

    Article  CAS  Google Scholar 

  27. The Merck Index, Eleventh edition (1989), Merck Co. Inc., Rahway, NJ, USA.

  28. C Stubenrauch GH Findenegg (1998) Langmuir 14 6005 Occurrence Handle10.1021/la9804637 Occurrence Handle1:CAS:528:DyaK1cXlvV2qt78%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garti N .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spernath, A., Aserin, A. & Garti, N. Phase transition induced bywater dilution in phospholipid U-type food-grade microemulsions studied by DSC . J Therm Anal Calorim 83, 297–308 (2006). https://doi.org/10.1007/s10973-005-7037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7037-5

Keywords

Navigation