Skip to main content
Log in

Thermodynamics and structure of the ordered amorphous phase in polymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Experimental data are analysed to show that the activation enthalpy and the structural entropy appear to follow empirical relations for structural relaxation of polymeric systems. The relations indicate that melting temperature, glass transition temperature, relaxation time, coefficient of thermal expansion of free volume are interrelated in polymers. The parameters of structural relaxations, measured by mechanical and dielectric spectroscopies, are reviewed for polyethylene, poly(4-methyl-1-pentene) and a liquid-crystalline polynorbornene derivative. The thermodynamic parameters obtained from calorimetric measurements, are reported for zero heating rate extrapolation and they are used in the empirical relation, which combines the Arrhenius and the Vogel-Fulcher formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Elliot, ‘Physics of amorphous materials’, Longman, London 1983, Chap. 2.

    Google Scholar 

  2. R. H. Doremus, ‘Glass science’, Wiley, New York 1994.

    Google Scholar 

  3. S. Matsuoka, ‘Relaxation phenomena in polymers’, Hanser Publishers, Munich 1992.

    Google Scholar 

  4. E. J. Donth, ‘Relaxation and thermodynamics in polymers’, Akad. Verl., Berlin 1992.

    Google Scholar 

  5. N. G. McCrumm, B. E. Read and G. Williams, ‘Anelastic and dielectric effects in polymer solids’, Wiley, London 1967.

    Google Scholar 

  6. W. G. Hu, C. Boeffele and K. Schmidt-Rohr, Macromolecules, 32 (1999) 1611.

    Google Scholar 

  7. J. Dobertin, A. Hensel and C. Schick, J. Thermal Anal., 47 (1996) 1027.

    Google Scholar 

  8. G. P. Johari, J. Chem. Phys., 112 (2000) 7518.

    Article  Google Scholar 

  9. R. Boehmer, K. L. Ngai, C. A. Angell and D. J. Plazek, J. Chem. Phys., 99 (1993) 4201.

    Article  Google Scholar 

  10. Y. Kong and J. H. Hay, Polymer, 43 (2002) 3873.

    Article  Google Scholar 

  11. W. G. Hu and K. Schmidt-Rohr, Polymer, 41 (2000) 2979.

    Article  Google Scholar 

  12. L. C. Simon, R. F. de Souza, J. B. P. Soares and R. S. Mauler, Polymer, 42 (2001) 4892.

    Google Scholar 

  13. L. C. Struik, Polymer, 29 (1987) 1521, 1534; 30 (1989) 799, 815.

    Article  Google Scholar 

  14. J. P. Flory, J. Am. Chem. Soc., 84 (1962) 2857.

    Google Scholar 

  15. A. Danch, J. Therm. Anal. Cal., 54 (1998) 151.

    Article  Google Scholar 

  16. A. Danch, J. Therm. Anal. Cal., 56 (1999) 1097.

    Article  Google Scholar 

  17. A. Danch, W. Osoba and F. Stelzer, Eur. Polym. J., 39 (2003) 2051.

    Article  Google Scholar 

  18. A. Danch and W. Osoba, J. Therm. Anal. Cal., 72 (2003) 641.

    Article  Google Scholar 

  19. A. Danch, A. Kocot, J. Zioło and F. Stelzer, Macromol. Phys. Chem., 202 (2001) 105.

    Article  Google Scholar 

  20. A. Danch, J. Therm. Anal. Cal., 65 (2001) 525.

    Article  Google Scholar 

  21. A. Danch and W. Osoba, ‘Influence of the free volume and chain flexibility on transport properties of membranes’ in ‘Membranes and membrane processes in environmental protection–, ed. by M. Bodzek, Politechnika Śląska, Gliwice 2002, p. 19; A. Danch and W. Osoba, Desalination, 163 (2004)143.

    Google Scholar 

  22. A. Danch, Fibres and Textiles, 11 (2003) 128.

    Google Scholar 

  23. A. Danch and W. Osoba, J. Mater. Proc. Techn., (2004) in press.

  24. J. E. Mark, A. Eisenberg, W. W. Greassley, L. Mandelkern, W. T. Samulski, J. L. Koenig and G. D. Wignall, ‘Physical Properties of Polymers’, ACS, Washington 1993, Chap. 2.

    Google Scholar 

  25. I. M. Ward, ‘Mechanical properties of solid polymers’, Wiley, London 1971, Chap. 8.

    Google Scholar 

  26. M. Ungerank, B. Winkler, E. Eder and F. Stelzer, Macromol. Chem. Phys., 196 (1995) 3623; B. Winkler, M. Ungerank and F. Stelzer, ibid, 197 (1996) 2343.

    Article  Google Scholar 

  27. S. Rzoska and J. Zioło, Phys. Rev. B, 59 (1999) 2460.

    Google Scholar 

  28. B. Jurkowski, Y. A. Olkhov and B. Jurkowska, J. Appl. Polym. Sci., 74 (1999) 490.

    Article  Google Scholar 

  29. B. Jurkowski, Y. A. Olkhov, B. Jurkowska and H. Menge, Polym. Testing, 21 (2002) 597.

    Article  Google Scholar 

  30. M. Kozak, A. Danch, M. Kozak, W. Osoba, L. Domka, F. Stelzer and S. Jurga, Polymers and Polymer Composites, 12 (2004) 409.

    Google Scholar 

  31. A. Danch, K. Lohner, M. Ungerank and F. Stelzer, J. Therm. Anal. Cal., 54 (1998) 151.

    Article  Google Scholar 

  32. M. S. Graff and R. H. Boyd, Polymer, 35 (1994) 1797.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danch, A. Thermodynamics and structure of the ordered amorphous phase in polymers. J Therm Anal Calorim 79, 205–212 (2005). https://doi.org/10.1007/s10973-004-0585-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-004-0585-2

Navigation