Skip to main content
Log in

Thermoanalytical investigation of crystalline layered hafnium salts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Transition metal containing hafnium phosphates forms has layered monoclinic structure. In general these materials have similar route of thermal decomposition; i.e. they loss their crystal water first then at a higher temperature their structural one. At least the result HfP2O7 goes through phase change at about 1000 K. In detail among their thermal decomposition some differences occur. The Mn and Zn containing samples have similar behaviour as pure hafnium phosphate. The Cu and Ni containing materials have an additional exo-process connected with the transition metal oxide forms. In case of Co containing sample similar to that of Zn containing one (but very weak) processes were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Elmismari, A. Dehair, L. Szirtes and S. K. Shakshooki, J. Radioanal. Nucl. Chem. Art., 158 (1992) 3.

    Google Scholar 

  2. S. K. Shakshooki, N. Naqvi, J. Kowalczyk, S. Khalil, M. Rais and F. Tarish, React. Polym., 7 (1988) 221.

    Google Scholar 

  3. S. K. Shakshooki, N. Naqvi, S. Khalil, M. Mostaq and L. Szirtes, J. Radioanal. Nucl. Chem. Art., 121 (1988) 195.

    Google Scholar 

  4. S. K. Shakshooki, F. Masaodi, A Dehair, L. Szirtes and J. Kowalczyk, J. Radioanal. Nucl. Chem. Art., 132 (1989) 251.

    Google Scholar 

  5. G. C. Hadjipanayis and R. W. Siegel (Eds), Nanophase Materials: Synthesis, Properties, Applications, Kluwer, Dordrecht, 1994 and references herein.

    Google Scholar 

  6. K. Mészáros-Szécsényi, V. M. Leovac, Z. K. Jacimovic and G. Pokol, J. Therm. Anal. Cal., 74 (2003) 943.

    Article  Google Scholar 

  7. V. Logvinenko, L. Yudanova, N. Yudanov and G. Chekhova, J. Therm. Anal. Cal., 74 (2003) 395.

    Article  Google Scholar 

  8. L. Szirtes, J. Megyeri, L. Riess and E. Kuzmann, J. Therm. Anal. Cal., 65 (2001) 975.

    Article  Google Scholar 

  9. L. Szirtes, J. Megyeri and E. Kuzmann, Solid State Ionics in press.

  10. E. B. Sandell (ed.), Colorimetric Determination of Traces of Metals, Intersci. Publ. Inc. N.Y. 1959.

    Google Scholar 

  11. E. Schulek and Z. Szabó, Theory and methods of quantitative analysis, Tankönyvkiadó, Budapest 1971, p. 418 (in Hungarian).

    Google Scholar 

  12. L. Szirtes, J. Megyeri, L. Riess and E. Kuzmann, J. Therm. Anal. Cal., 63 (2001) 117.

    Article  Google Scholar 

  13. S. K. Shakshooki, A. Dehair, L. Szirtes and Yu.V. Yakovlev, J. Radioanal. Nucl. Chem. Lett., 154 (1991) 23.

    Google Scholar 

  14. L. Szirtes, J. Megyeri and E. Kuzmann, J. Crystallogr. to be published.

  15. L. Szirtes, J. Megyeri, E. Kuzmann and Z. Klencsár, Solid State Ionics, 145 (2001) 257.

    Article  Google Scholar 

  16. L. Szirtes, L. Riess and J. Megyeri, J. Therm. Anal. Cal., 73 (2003) 209.

    Article  Google Scholar 

  17. S. Viano, R. Mishra, J. Lloyd, T. Losby and T. Gheyi, J. Non-Cryst. Solids, 325 (2003) IBNLFASSI16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szirtes, L., Riess, L. & Megyeri, J. Thermoanalytical investigation of crystalline layered hafnium salts. J Therm Anal Calorim 79, 135–140 (2005). https://doi.org/10.1007/s10973-004-0574-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-004-0574-5

Navigation