Abstract
Anecdotal accounts from science educators suggest that few teachers are teaching science as inquiry. However, there is little empirical evidence to support this claim. This study aimed to provide evidence-based documentation of the state-of-use of inquiry-based instruction and explicit instruction about nature of science (NOS). We examined the teaching practice and views of inquiry and NOS of 26, well-qualified and highly motivated 5th–9th-grade teachers from across the country in order to establish the extent to which their views and practice aligned with ideas in reform-based documents. We used a mixed-methods approach analyzing lesson descriptions, classroom observations, videotape data, questionnaires, and interviews to assess teaching practice and views of inquiry and NOS of these teachers. We also determined the relationships between teachers’ views and their teaching practice. Findings indicated the majority of these teachers held limited views of inquiry-based instruction and NOS. In general, these views were reflected in their teaching practice. Elements of inquiry including abilities, understandings, and essential features were observed or described in less than half the classrooms. Most commonly, teachers focused on basic abilities to do inquiry instead of the essential features or important understandings about inquiry. When aspects of inquiry were present, they were generally teacher-initiated. There was also little evidence of aspects of NOS in teachers’ instruction. This study provides empirical evidence for the claim that even some of the best teachers currently struggle to enact reformed-based teaching. Further, it highlights the critical need for an agreement upon definition of inquiry-based instruction and the need to develop appropriate and feasible assessments that specifically target inquiry to track changes in teachers’ views and practice. Important implications include the heightened need for rigorous and continuous professional development to support teachers in learning about inquiry and NOS and how to enact reform-based instruction in classrooms.
Similar content being viewed by others
Notes
This study was conducted prior to a multi-year teacher professional development program. We reported on the change in teachers’ views after the professional development experience in a conference paper presented at the European Science Education Research Association. This paper is currently in review.
References
Abd-El-Khalick, F., & Boujaoude, S. (1997). An exploratory study of the knowledge base for science teaching. Journal of Research in Science Teaching, 34, 673–699.
Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.
Abell, S. K., & McDonald, J. T. (2004). Envisioning a curriculum of inquiry in the elementary school. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Dordrecht: Kluwer Academic Publishers.
Abell, S. K., & Roth, M. (1992). Constraints to teaching elementary science: A case study of a science enthusiast student teacher. Science Education, 76(6), 581–595.
Ackerson, V. L., & Donnelly, L. A. (2008). Relationships among learner characteristics and preservice elementary teachers’ views of nature of science. Journal of Elementary Science Education, 20(1), 45–58.
Ackerson, V. L., & Hanuscin, D. L. (2007). Teaching nature of science through inquiry: Results of a 3-year professional development program. Journal of Research in Science Teaching, 44(5), 653–680.
Akindehin, F. (1988). Effect of an instructional package on preservice science teachers’ understanding of the nature of science and acquisition of science-related attitudes. Science Education, 72, 73–82.
American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York: Oxford University Press.
American Association for the Advancement of Sciences. (1989). Project 2061: Science for all Americans. New York: Oxford University Press.
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12.
Anderson, R. D. (2007). Inquiry as an organizing theme for science education. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 807–830). Mahwah, NJ: Erlbaum.
Bell, C. A. (2002). Determining the effects of a professional development program on teachers’ inquiry knowledge and classroom action: A case study of a professional development strategy. Unpublished doctoral dissertation, Purdue University, West Lafayette, IN.
Blanchard, M. R., Southerland, S. A., & Granger, E. M. (2009). No silver bullet for inquiry: Making sense of teacher change following an inquiry-based research experience for teachers. Science Education, 93(2), 322–360.
Brown, P. L., Abell, S. K., Abdulkadir, D., & Schmidt, F. L. (2006). College science teachers’ views of classroom inquiry. Science Education, 90, 784–802.
Bryan, L. A. (2003). Nestedness of beliefs: Examining a prospective elementary teacher’s belief system about science teaching and learning. Journal of Research in Science Teaching, 40(9), 835–868.
Capps, D. K., Crawford, B. A., & Constas, M. A. (2012). A review of empirical literature on inquiry professional development: Alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23(3), 291–318.
Carey, S., & Smith, D. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235–251.
Carey, R. L., & Stauss, N. G. (1970). An analysis of experienced science teachers’ understanding of the nature of science. School Science and Mathematics, 70, 366–376.
Cochran-Smith, M., & Lytle, S. L. (1999). Relationships of knowledge and practice: Teacher learning in communities. Review of Research in Education, 24, 249–305.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37(9), 916–937.
Crawford, B. A. (2007). Learning to teach science as inquiry in the rough and tumble of practice. Journal of Research in Science Teaching, 44(4), 613–642.
Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Los Angeles: Sage.
Duschl, R. A. (1990). Restructuring science education. New York: Teachers College Press.
Flick, L., & Lederman, N. G. (Eds.). (2004). Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. The Netherlands: Kluwer Academic Publishers.
Gess-Newsome, J. (1999). Secondary teachers’ knowledge and beliefs about subject matter and their impact on instruction. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 51–94). Dordrecht: Kluwer Academic.
Ginns, I. S., & Watters, J. J. (1999). Beginning elementary school teachers and the effective teaching of science. Journal of Science Teacher Education, 10(4), 287–313.
Haury, D. L. (1993). Teaching science through inquiry. ERIC CSMEE Digest, March (ED 359 048).
Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541–562.
Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.
Lederman, N. G. (2004). In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Dordrecht: Kluwer Academic Publishers.
Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 831–880). Mahwah, NJ: Lawrence Erlbaum Associates.
Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.
Lee, C. A., & Houseal, A. (2003). Self-efficacy, standards, and benchmarks as factors in teaching elementary school science. Journal of Elementary Science Education, 15, 37–56.
Lord, T., & Orkwiszewski, T. (2006). Moving from didactic to inquiry-based instruction in a science laboratory. The American Biology Teacher, 68(6), 342–345.
Loucks-Horsely, S., Love, N., Stiles, K., Mundry, S., & Hewson, P. W. (2003). Designing professional development for teachers of science and mathematics (2nd ed.). Thousand Oaks, CA: Corwin Press, Inc.
Luft, J. A. (2001). Changing inquiry practices and beliefs: The impact of an inquiry-based professional development programme on beginning and experienced secondary science teachers. International Journal of Science Education, 23(5), 517–534.
McComas, W. F., Almazroa, H., & Clough, M. P. (1998). The nature of science in science education: An introduction. Science & Education, 7, 511–532.
Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.
National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academy Press.
Phillips, D. C. (1995). The good, the bad, and the ugly: The many faces of constructivism. Educational Researcher, 24(7), 5–12.
Prawat, R. S. (1992). Teachers’ beliefs about teaching and learning: A constructivist perspective. American Journal of Education, 100(3), 354–395.
Radford, D. L. (1998). Transferring theory into practice: A model for professional development for science education reform. Journal of Research in Science Teaching, 35(1), 73–88.
Roehrig, G. H., & Luft, J. A. (2004). Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons. International Journal of Science Education, 26(1), 3–24.
Roth, K. J., Druker, S. L., Garnier, H. E., Lemmens, M., Chen, C., Kawanaka, T. et al. (2006). Highlights from the TIMSS 1999 video study of eighth-grade science teaching. (NCES 2006–017). U.S. Department of Education, National Center for Education Statistics. Washington, DC: U.S. Government Printing Office.
Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88(4), 610–645.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.
Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22.
Stake, R., & Easley, J. (1978). Case studies in science education. Urbana, IL: The University of Illinois.
US Department of Education. (1999). Student work and teacher practices in science. Washington, DC: National Center for Educational Statistics.
van Driel, J. H., Biejaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers’ practical knowledge. Journal of Research in Science Teaching, 38(2), 137–158.
van Driel, J. H., Verloop, N., & de Vos, W. (1998). Developing science teachers’ pedagogical content knowledge. Journal of Research in Science Teaching, 35(6), 673–695.
Weiss, I., Pasley, J., Smith, S., Banilower, E. R., & Heck, D. (2003). Looking inside the classroom: A study of K-12 mathematics and science education in the United States. Chapel Hill: Horizon Research, Inc.
Wells, G. (1995). Language and the inquiry-oriented curriculum. Curriculum Inquiry, 25(3), 233–269.
Windschitl, M. (2002). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Science Education, 87(1), 112–143.
Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant No. NSF 733233. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of The National Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
About this article
Cite this article
Capps, D.K., Crawford, B.A. Inquiry-Based Instruction and Teaching About Nature of Science: Are They Happening?. J Sci Teacher Educ 24, 497–526 (2013). https://doi.org/10.1007/s10972-012-9314-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10972-012-9314-z